Skip to main content
Log in

Natural Fiber Reinforced Poly(vinyl chloride) Composites: Effect of Fiber Type and Impact Modifier

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Poly(vinyl chloride) (PVC) and natural fiber composites were prepared by melt compounding and compression molding. The influence of fiber type (i.e., bagasse, rice straw, rice husk, and pine fiber) and loading level of styrene-ethylene-butylene-styrene (SEBS) block copolymer on composite properties was investigated. Mechanical analysis showed that storage modulus and tensile strength increased with fiber loading at the 30% level for all composites, but there was little difference in both properties among the composites from various fiber types. The use of SEBS decreased storage moduli, but enhanced tensile strength of the composites. The addition of fiber impaired impact strength of the composites, and the use of SEBS led to little change of the property for most of the composites. The addition of fiber to PVC matrix increased glass transition temperature (Tg), but lowered degradation temperature (Td) and thermal activation energy (Ea). After being immersed in water for four weeks, PVC/rice husk composites presented relatively smaller water absorption (WA) and thickness swelling (TS) rate compared with other composites. The results of the study demonstrate that PVC composites filled with agricultural fibers had properties comparable with those of PVC/wood composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Clemons C (2002) Forest Prod J 52:10

    Google Scholar 

  2. Selke SE, Wichman I (2004) Composites: Part A 35:321

    Article  Google Scholar 

  3. Jiang H, Kamdem DP (2004) J Vinyl Addit Technol 10:70

    Article  CAS  Google Scholar 

  4. Liao B, Huang Y, Zhao S, Lin G, Cong G (1996) Chin J Appl Chem 13:64

    CAS  Google Scholar 

  5. Maldas D, Kokta BV (1989) J Adhes Sci Technol 3:529

    Article  CAS  Google Scholar 

  6. Lu JZ, Wu Q, Negulescu II (2002) Wood Fiber Sci 34:434

    CAS  Google Scholar 

  7. Kokta BV, Maldas D, Daneault C, Beland P (1990) Polym Compos 11:84

    Article  CAS  Google Scholar 

  8. Bledzki AK, Reihmane S, Gassan J (1998) Polym Plast Tech Eng 37:451

    Article  CAS  Google Scholar 

  9. Shah BL, Matuana LM (2005) J Vinyl Addit Technol 11:160

    Article  CAS  Google Scholar 

  10. Mengeloglu F, Matuana LM, King JA (2000) J Vinyl Addit Tech 6:153

    Article  CAS  Google Scholar 

  11. Hong BK, Jo WH (2000) Polymer 41:2069

    Article  CAS  Google Scholar 

  12. Schwarz MC, Barlow JW, Paul DR (2003) J Appl Polym Sci 35:2053

    Article  Google Scholar 

  13. Sombatsompop N, Chaochanchaikul K (2004) Polym Int 53:1210

    Article  CAS  Google Scholar 

  14. Jimenez A, Berenguer V, Lopez J, Sanchez A (1993) J Appl Polym Sci 50:1565

    Article  CAS  Google Scholar 

  15. Wu Y, Dollimore D (1998) Thermochimica Acta 324:49

    Article  CAS  Google Scholar 

  16. Ge XC, Li XH, Meng YZ (2004) J Appl Polym Sci 93:1804

    Article  CAS  Google Scholar 

  17. Jiang H, Kamdem DP (2004) J Vinyl Addit Technol 10:59

    Article  CAS  Google Scholar 

  18. Joo YL, Cho MH (1999) Int Polym Process 14:10

    CAS  Google Scholar 

  19. Ayora M, Rios R, Quijano J, Marquez A (1997) Polym Compos 18:549

    Article  CAS  Google Scholar 

  20. Sombatsompop N, Chaochanchaikul K, Phromchirasuk C, Thongsang S (2003) Polym Int 52:1847

    Article  CAS  Google Scholar 

  21. Bledzki AK, Gassan J (1999) Prog Polym Sci 24:221

    Article  CAS  Google Scholar 

  22. Vrandecic NS, Andricic B, Klaric I (2005) Polym Degrad Stab 90:455

    Article  Google Scholar 

  23. Dollimore D (1992) Thermochimica Acta 203:7

    Article  CAS  Google Scholar 

  24. Bledzki AK, Misra M, Hinrichsen G (2002) Rapra Rev Rep 13:1

    Google Scholar 

  25. Jackson MG (1977) Anim Feed Sci Tech 2:105

    Article  Google Scholar 

  26. Marongiu A, Faravelli T, Bozzano G, Dente M, Ranzi E (2003) J Anal Appl Pyrol 70:519

    Article  CAS  Google Scholar 

  27. Saheb DN, Jog JP (1999) Adv Polym Technol 18:351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the USDA Rural Development—Biomass Initiative Program (No: 68-3A75-6-508) and from Louisiana Board of Regents Industrial Tie Subprogram (LEQSF: 2005-008-RD-B-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y., Wu, Q., Lei, Y. et al. Natural Fiber Reinforced Poly(vinyl chloride) Composites: Effect of Fiber Type and Impact Modifier. J Polym Environ 16, 250–257 (2008). https://doi.org/10.1007/s10924-008-0113-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0113-8

Keywords

Navigation