Skip to main content

Advertisement

Log in

Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The degree of stenosis in the carotid artery can be predicted using automated carotid lumen diameter (LD) measured from B-mode ultrasound images. Systolic velocity-based methods for measurement of LD are subjective. With the advancement of high resolution imaging, image-based methods have started to emerge. However, they require robust image analysis for accurate LD measurement. This paper presents two different algorithms for automated segmentation of the lumen borders in carotid ultrasound images. Both algorithms are modeled as a two stage process. Stage one consists of a global-based model using scale-space framework for the extraction of the region of interest. This stage is common to both algorithms. Stage two is modeled using a local-based strategy that extracts the lumen interfaces. At this stage, the algorithm-1 is modeled as a region-based strategy using a classification framework, whereas the algorithm-2 is modeled as a boundary-based approach that uses the level set framework. Two sets of databases (DB), Japan DB (JDB) (202 patients, 404 images) and Hong Kong DB (HKDB) (50 patients, 300 images) were used in this study. Two trained neuroradiologists performed manual LD tracings. The mean automated LD measured was 6.35 ± 0.95 mm for JDB and 6.20 ± 1.35 mm for HKDB. The precision-of-merit was: 97.4 % and 98.0 % w.r.t to two manual tracings for JDB and 99.7 % and 97.9 % w.r.t to two manual tracings for HKDB. Statistical tests such as ANOVA, Chi-Squared, T-test, and Mann-Whitney test were conducted to show the stability and reliability of the automated techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. World Heart Federation 2015 [online]. Available at: http://www.world-heart-federation.org/cardiovascular-health/stroke/

  2. Sobieszczyk, P., and Beckman, J., Carotid artery disease. Circulation. 114(7):e244–e247, 2006.

    Article  PubMed  Google Scholar 

  3. dev Sahu, C., and Wintermark, M., Clinical CT imaging of carotid arteries. In: Multi-Modality Atherosclerosis Imaging and Diagnosis. Springer, New York, pp. 123–128, 2014.

    Chapter  Google Scholar 

  4. Suri, J.S., Kathuria, C., and Molinari, F. (Eds.), Atherosclerosis disease management. Springer Science & Business Media, New York, 2010.

    Google Scholar 

  5. Sanches, J.M., Laine, A.F., and Suri, J.S., Ultrasound imaging. Springer, New York, 2012.

    Book  Google Scholar 

  6. Molinari, F., Zeng, G., and Suri, J.S., An integrated approach to computer based automated tracing and its validation for 200 common carotid arterial wall ultrasound images. J. Ultrasound Med. 29(3):399–418, 2010.

    PubMed  Google Scholar 

  7. Molinari, F., Krishnamurthi, G., Acharya, U.R., et al., Hypothesis validation of far-wall brightness in carotid-artery ultrasound for feature-based IMT measurement using a combination of level-set segmentation and registration. IEEE Trans. Instrum. Meas. 61(4):1054–1063, 2012.

    Article  Google Scholar 

  8. Nicolaides, A., Beach, K.W., Kyriacou, E., et al., Ultrasound and carotid bifurcation atherosclerosis. Springer Science & Business Media, New York, 2011.

    Google Scholar 

  9. Saba, L., Montisci, R., Molinari, F., et al., Comparison between manual and automated analysis for the quantification of carotid wall by using sonography. A validation study with CT. Eur. J. Radiol. 81(5):911–918, 2012.

    Article  PubMed  Google Scholar 

  10. Suri, J.S., Wilson, D., and Laxminarayan, S., Handbook of biomedical image analysis. Vol. 2. Springer Science & Business Media, New York, 2005.

    Book  Google Scholar 

  11. Saba, L., Sanches, J.M., Pedro, L.M., et al., Multi-modality atherosclerosis imaging and diagnosis. Springer, New York, 2014.

    Book  Google Scholar 

  12. de Korte, C.L., Hansen, H.H., and van der Steen, A.F., Vascular ultrasound for atherosclerosis imaging. Interface Focus. 1(4):565–575, 2011.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Suri, J.S., Yuan, C., and Wilson, D.L., Plaque imaging: pixel to molecular level. Vol. 113. IOS Press, Amsterdam, 2005.

    Google Scholar 

  14. Bastida-Jumilla, M.C., Menchón-Lara, R.M., Morales-Sánchez, J., et al., Segmentation of the common carotid artery walls based on a frequency implementation of active contours. J. Digit. Imaging. 26(1):129–139, 2013.

    Article  PubMed  Google Scholar 

  15. El-Baz, A., Gimel’farb, G., and Suri, J.S., Stochastic modeling for medical image analysis. CRC Press, Boca Raton, 2015.

    Google Scholar 

  16. Suri, J.S., Singh, S., and Reden, L., Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (Part I): a state-of-the-art review. Pattern Anal. Applic. 5(1):46–76, 2002.

    Article  Google Scholar 

  17. Santos, A.M.F., Tavares, J.M.R.S., Sousa, L., et al., Automatic segmentation of the lumen of the carotid artery in ultrasound B-mode images. Expert Syst. Appl. 40(16):6570–6579, 2013.

    Article  Google Scholar 

  18. Sifakis, E.G., and Golemati, S., Robust carotid artery recognition in longitudinal B-mode ultrasound images. IEEE Trans. Image Process. 23(9):3762–3772, 2014.

    Article  PubMed  Google Scholar 

  19. Golemati, S., Stoitsis, J., Sifakis, E.G., et al., Using the Hough transform to segment ultrasound images of longitudinal and transverse sections of the carotid artery. Ultrasound Med. Biol. 33(12):1918–1932, 2007.

    Article  PubMed  Google Scholar 

  20. Loizou, C.P., Kasparis, T., Spyrou, C., et al., Integrated system for the complete segmentation of the common carotid artery bifurcation in ultrasound images. Artif. Intell. Appl. Innov. 412(1):292–301, 2013.

    Article  Google Scholar 

  21. Yang, X., Jin, J., Xu, M., et al., Ultrasound common carotid artery segmentation based on active shape model. Comput. Math Methods Med. 2013(11):3459–3468, 2013.

    Google Scholar 

  22. Rocha, R., Silva, J., and Campilho, A., Automatic detection of the carotid lumen axis in B-mode ultrasound images. Comput. Methods Prog. Biomed. 115(3):110–118, 2014.

    Article  Google Scholar 

  23. Filardi, V., Carotid artery stenosis near a bifurcation investigated by fluid dynamic analyses. Neuroradiol. J. 26(4):439–453, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Farag, A., and Suri, J.S. (Eds.), Deformable models: biomedical and clinical applications. Vol. I. Springer Science & Business Media, New York, 2007.

    Google Scholar 

  25. Farag, A., and Suri, J.S. (Eds.), Deformable models: biomedical and clinical applications. Vol. II. Springer Science & Business Media, New York, 2007.

    Google Scholar 

  26. Suri, J.S., Liu, K., Singh, S., et al., Shape recovery algorithms using level sets in 2-D/3-D medical imagery: a state-of-the-art review. IEEE Trans. Inf. Technol. Biomed. 6(1):8–28, 2002.

    Article  PubMed  Google Scholar 

  27. Molinari, F., Meiburger, K.M., Saba, L., et al., Fully automated dual-snake formulation for carotid intima-media thickness measurement a new approach. J. Ultrasound Med. 31(7):1123–1136, 2012.

    PubMed  Google Scholar 

  28. Molinari, F., Meiburger, K.M., Saba, L., et al., Constrained snake vs. conventional snake for carotid ultrasound automated IMT measurements on multi-center data sets. Ultrasonics. 52(7):949–961, 2012.

    Article  PubMed  Google Scholar 

  29. Saba, L., Lippo, R.S., Tallapally, N., et al., Evaluation of carotid wall thickness by using computed tomography and semi-automated ultrasonographic software. J. Vasc. Ultrasound. 35(3):136–142, 2011.

    Google Scholar 

  30. Molinari, F., Meiburger, K.M., Zeng, G., et al., Carotid artery recognition system: a comparison of three automated paradigms for ultrasound images. Med. Phys. 39(1):378–391, 2012.

    Article  PubMed  Google Scholar 

  31. Suri, J.S., Liu, K., Reden, L., et al., A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans. Inf. Technol. Biomed. 6(4):324–337, 2002.

    Article  PubMed  Google Scholar 

  32. Suri, J.S., Liu, K., Reden, L., et al., A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans. Inf. Technol. Biomed. 6(4):338–350, 2002.

    Article  PubMed  Google Scholar 

  33. Araki, T., Banchhor, S.K., Londhe, N.D., et al., Reliable and accurate calcium volume measurement in coronary artery using intravascular ultrasound videos. J. Med. Syst. 40(3):1–20, 2016.

    Article  Google Scholar 

  34. Prosi, M., Perktold, K., and Schima, H., Effect of continuous arterial blood flow in patients with rotary cardiac assist device on the washout of a stenosis wake in the carotid bifurcation: a computer simulation study. J. Biomech. 40(10):2236–2243, 2007.

    Article  PubMed  Google Scholar 

  35. Hartigan, J.A., and MA, W., Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc.: Ser. C: Appl. Stat. 28(1):100–108, 1979.

    Google Scholar 

  36. Suri, J.S., Haralick, R.M., and Sheehan, F.H., Greedy algorithm for error correction in automatically produced boundaries from low contrast ventriculograms. Pattern Anal. Applic. 3(1):39–60, 2000.

    Article  Google Scholar 

  37. Molinari, F., Meiburger, K.M., Saba, L., et al., Ultrasound IMT measurement on a multi-ethnic and multi-institutional database: our review and experience using four fully automated and one semi-automated methods. Comput. Methods Prog. Biomed. 108(3):946–960, 2012.

    Article  Google Scholar 

  38. Sethian, J.A., Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University, Cambridge, 1999.

    Google Scholar 

  39. Suri, J.S., and Laxminarayan, S., PDE and level sets. Springer Science & Business Media, New York, 2002.

    Google Scholar 

  40. Li, C., Xu, C., Gui, C., et al., Distance regularized level set evolution and its application to image segmentation. IEEE Trans. Image Process. 19(12):3243–3254, 2010.

    Article  PubMed  Google Scholar 

  41. Molinari, F., Zeng, G., and Suri, J.S., Inter-greedy technique for fusion of different segmentation strategies leading to high-performance carotid IMT measurement in ultrasound images. J. Med. Syst. 35(1):905–919, 2011.

    Article  PubMed  Google Scholar 

  42. Sousa, L.C., Castro, C.F., António, C.C., et al., Toward hemodynamic diagnosis of carotid artery stenosis based on ultrasound image data and computational modeling. Med. Biol. Eng. Comput. 52(11):971–983, 2014.

    Article  PubMed  Google Scholar 

  43. Dey, N., Bose, S., Das, A., et al., Effect of watermarking on diagnostic preservation of atherosclerotic ultrasound video in stroke telemedicine. J. Med. Syst. 40(4):1–14, 2016.

    Article  Google Scholar 

  44. Chow, T.Y., Cheung, J.S., Wu, Y., et al., Measurement of common carotid artery lumen dynamics during the cardiac cycle using magnetic resonance TrueFISP cine imaging. J. Magn. Reson. Imaging. 28(6):1527–1532, 2008.

    Article  PubMed  Google Scholar 

  45. Saba, L., Araki, T., Kumar, K.P., et al., Carotid inter-adventitial diameter is more strongly related to plaque score than lumen diameter: an automated tool for stroke analysis. J. Clin. Ultrasound. 44(4):210–220, 2016.

    Article  PubMed  Google Scholar 

  46. Saba, L., Ikeda, N., Deidda, M., et al., Association of automated carotid IMT measurement and HbA1c in Japanese patients with coronary artery disease. Diabetes Res. Clin. Pract. 100(3):348–353, 2013.

    Article  CAS  PubMed  Google Scholar 

  47. Polak, J.F., Sacco, R.L., Post, W.S., et al., Incident stroke is associated with common carotid artery diameter and not common carotid artery intima-media thickness. Stroke. 45(5):1442–1446, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jensen-Urstad, K., Jensen-Urstad, M., and Johansson, J., Carotid artery diameter correlates with risk factors for cardiovascular disease in a population of 55-year-old subjects. Stroke. 30(8):1572–1576, 1999.

    Article  CAS  PubMed  Google Scholar 

  49. Godia, E.C., Madhok, R., Pittman, J., et al., Carotid artery distensibility a reliability study. J. Ultrasound Med. 26(9):1157–1165, 2007.

    PubMed  PubMed Central  Google Scholar 

  50. Carvalho, D.D., Akkus, Z., van den Oord, S.C., et al., Lumen segmentation and motion estimation in B-mode and contrast-enhanced ultrasound images of the carotid artery in patients with atherosclerotic plaque. IEEE Trans. Med. Imaging. 34(4):983–993, 2015.

    Article  PubMed  Google Scholar 

  51. Sharma, A. M., Araki, T., Kumar, A. M., et al. Ultrasound-based automated carotid lumen diameter/stenosis measurement and its validation system. J. Vasc. Ultrasound 2016 (in Press).

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jasjit S. Suri.

Ethics declarations

Conflict of Interest

Dr. Jasjit S. Suri has a relationship with AtheroPoint™, Roseville, CA, USA which is dedicated to Atherosclerosis Disease Management including Stroke and Cardiovascular imaging.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Appendices

Appendix-A

Statistical analysis tables on Japan database

Table 7 Mann-Whitney test (Region-based technique)
Table 8 Mann-Whitney test (Boundary-based technique)
Table 9 Student’s T- test (Region-based technique)
Table 10 Student’s T- test (Boundary-based technique)
Table 11 ANOVA test (Region-based technique)
Table 12 ANOVA test (Boundary-based technique)
Table 13 Chi-Square test for LD (Region-based technique)
Table 14 Chi-Square test for LD (Boundary-based Technique)

Appendix-B

Statistical analysis tables on Hong Kong database (HKDB)

Table 15 Mann-Whitney test (Region-based technique)
Table 16 Mann-Whitney test (Boundary-based Technique)
Table 17 Student’s T- test (Region-based technique)
Table 18 Student’s T- test (Boundary-based Technique)
Table 19 ANOVA test for LD (Region-based technique)
Table 20 ANOVA test for LD (Boundary-based technique)
Table 21 Chi-Square test for LD (Region-based technique)
Table 22 Chi-Square test for LD (Boundary-based Technique)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araki, T., Kumar, P.K., Suri, H.S. et al. Two Automated Techniques for Carotid Lumen Diameter Measurement: Regional versus Boundary Approaches. J Med Syst 40, 182 (2016). https://doi.org/10.1007/s10916-016-0543-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0543-0

Keywords

Navigation