Skip to main content
Log in

Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present a new formulation for the computation of solutions of a class of Hamilton Jacobi Bellman (HJB) equations on closed smooth surfaces of co-dimension one. For the class of equations considered in this paper, the viscosity solution of the HJB equation is equivalent to the value function of a corresponding optimal control problem. In this work, we extend the optimal control problem given on the surface to an equivalent one defined in a sufficiently thin narrow band of the co-dimensional one surface. The extension is done appropriately so that the corresponding HJB equation, in the narrow band, has a unique viscosity solution which is identical to the constant normal extension of the value function of the original optimal control problem. With this framework, one can easily use existing (high order) numerical methods developed on Cartesian grids to solve HJB equations on surfaces, with a computational cost that scales with the dimension of the surfaces. This framework also provides a systematic way for solving HJB equations on the unstructured point clouds that are sampled from the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. All code used to produce the numerical simulations can be found at https://github.com/lindsmart/MartinTsaiExtHJB.

  2. The uniform samplings of the sphere were computed using the code provided at https://github.com/AntonSemechko/S2-Sampling-Toolbox.

  3. The point cloud for the torus was generated using the standard parametrization of a torus.

  4. The point cloud for the Stanford bunny is generated from a refinement of the triangulated Stanford bunny from https://casual-effects.com/data/ [26].

  5. The point clouds for the surfaces in Fig. 5 were generated from the triangulations downloaded at https://www.myminifactory.com/scantheworld/.

References

  1. Alton, K., Mitchell, I.M.: Fast marching methods for stationary Hamilton-Jacobi equations with axis-aligned anisotropy. SIAM J. Numer. Anal., 47(1):363–385, (2008/09)

  2. Bardi, M., Capuzzo-Dolcetta, I.: Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser Boston, Inc., Boston, MA. With appendices by Maurizio Falcone and Pierpaolo Soravia (1997)

  3. Bardi, M., Falcone, M.: An approximation scheme for the minimum time function. SIAM J. Control Optim. 28(4), 950–965 (1990)

    MathSciNet  MATH  Google Scholar 

  4. Bartesaghi, A., Sapiro, G.: A system for the generation of curves on 3d brain images. Hum. Brain Mapp. 14(1), 1–15 (2001)

    Google Scholar 

  5. Barth, T.J., Sethian, J.A.: Numerical schemes for the Hamilton-Jacobi and level set equations on triangulated domains. J. Comput. Phys. 145(1), 1–40 (1998)

    MathSciNet  MATH  Google Scholar 

  6. Carlini, E., Falcone, M., Ferretti, R.: A time-adaptive semi-Lagrangian approximation to mean curvature motion. In Numerical mathematics and advanced applications, pages 732–739. Springer, Berlin, (2006)

  7. Carlini, E., Falcone, M., Forcadel, N., Monneau, R.: Convergence of a generalized fast-marching method for an eikonal equation with a velocity-changing sign. SIAM J. Numer. Anal. 46(6), 2920–2952 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, L.-T., Burchard, P., Merriman, B., Osher, S.: Motion of curves constrained on surfaces using a level-set approach. J. Comput. Phys. 175(2), 604–644 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Chu, J., Tsai, R.: Volumetric variational principles for a class of partial differential equations defined on surfaces and curves. Res. Math. Sci., 5(2):Paper No. 19, 38, (2018)

  10. Crandall, M.G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277(1), 1–42 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Deckelnick, K., Elliott, C.M., Miura, T.-H., Styles, V.: Hamilton-Jacobi equations on an evolving surface. Math. Comput. 1, 01 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Falcone, M.: A numerical approach to the infinite horizon problem of deterministic control theory. Appl. Math. Optim. 15(1), 1–13 (1987)

    MathSciNet  MATH  Google Scholar 

  13. Falcone, M.: The minimum time problem and its applications to front propagation. In Motion by mean curvature and related topics (Trento, 1992), pp. 70–88. de Gruyter, Berlin (1994)

  14. Falcone, M., Ferretti, R.: Discrete time high-order schemes for viscosity solutions of Hamilton-Jacobi-Bellman equations. Numer. Math. 67(3), 315–344 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Hoch, P., Rascle, M.: Hamilton-Jacobi equations on a manifold and applications to grid generation or refinement. SIAM J. Sci. Comput. 23(6), 2055–2073 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Kao, C.Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping scheme for static Hamilton-Jacobi equations. J. Comput. Phys. 196(1), 367–391 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. Natl. Acad. Sci. USA 95(15), 8431–8435 (1998)

    MathSciNet  MATH  Google Scholar 

  18. Kublik, C., Tsai, R.: Integration over curves and surfaces defined by the closest point mapping. Res. Math. Sci., 3:Paper No. 3, 17, (2016)

  19. Kumar, A., Vladimirsky, A.: An efficient method for multiobjective optimal control and optimal control subject to integral constraints. J. Comput. Math. 28(4), 517–551 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Lai, R., Liang, J., Zhao, H.: A local mesh method for solving PDEs on point clouds. Inverse Probl. Imaging 7(3), 737–755 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Lenglet, C., Prados, E., Pons, J.-P., Deriche, R., Faugeras, O.: Brain connectivity mapping using Riemannian geometry, control theory, and PDEs. SIAM J. Imaging Sci. 2(2), 285–322 (2009)

    MathSciNet  MATH  Google Scholar 

  22. Li, F., Shu, C.-W., Zhang, Y.-T., Zhao, H.: A second order discontinuous Galerkin fast sweeping method for Eikonal equations. J. Comput. Phys. 227(17), 8191–8208 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Liang, J., Zhao, H.: Solving partial differential equations on point clouds. SIAM J. Sci. Comput. 35(3), A1461–A1486 (2013)

    MathSciNet  MATH  Google Scholar 

  24. Macdonald, C.B., Ruuth, S.J.: The implicit closest point method for the numerical solution of partial differential equations on surfaces. SIAM J. Sci. Comput., 31(6):4330–4350, (2009/10)

  25. Mantegazza, C., Mennucci, A.C.: Hamilton-Jacobi equations and distance functions on Riemannian manifolds. Appl. Math. Optim. 47(1), 1–25 (2003)

    MathSciNet  MATH  Google Scholar 

  26. McGuire, M.: Computer graphics archive, July 2017. https://casual-effects.com/data

  27. Mémoli, F., Sapiro, G.: Fast computation of weighted distance functions and geodesics on implicit hyper-surfaces. J. Comput. Phys. 173(2), 730–764 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Mémoli, F., Sapiro, G.: Distance functions and geodesics on submanifolds of \(\mathbb{ R}^d\) and point clouds. SIAM J. Appl. Math. 65(4), 1227–1260 (2005)

    MathSciNet  MATH  Google Scholar 

  29. Mirebeau, J.-M.: Anisotropic fast-marching on Cartesian grids using lattice basis reduction. SIAM J. Numer. Anal. 52(4), 1573–1599 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    MathSciNet  MATH  Google Scholar 

  31. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal. 29(3), 867–884 (1992)

    MathSciNet  MATH  Google Scholar 

  32. Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008)

    MathSciNet  MATH  Google Scholar 

  33. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. USA 93(4), 1591–1595 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41(1), 325–363 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Spira, A., Kimmel, R.: An efficient solution to the eikonal equation on parametric manifolds. Interfaces Free Bound. 6(3), 315–327 (2004)

    MathSciNet  MATH  Google Scholar 

  36. Tsai, Y.-H.R., Cheng, L.-T., Osher, S., Zhao, H.-K.: Fast sweeping algorithms for a class of Hamilton-Jacobi equations. SIAM J. Numer. Anal. 41(2), 673–694 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automat. Control 40(9), 1528–1538 (1995)

    MathSciNet  MATH  Google Scholar 

  38. Yoo, S.W., Seong, J., Sung, M., Shin, S.Y., Cohen, E.: A triangulation-invariant method for anisotropic geodesic map computation on surface meshes. IEEE Trans. Vis. Comput. Graph. 18(10), 1664–1677 (2012)

    Google Scholar 

  39. Zhang, Y.-T., Zhao, H.-K., Qian, J.: High order fast sweeping methods for static Hamilton-Jacobi equations. J. Sci. Comput. 29(1), 25–56 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Zhao, H.: A fast sweeping method for eikonal equations. Math. Comp. 74(250), 603–627 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are supported partially by National Science Foundation Grant DMS-1720171. Tsai also thanks National Center for Theoretical Study, Taipei for hosting his visits, in which some of the ideas presented in this paper originated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lindsay Martin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, L., Tsai, YH.R. Equivalent Extensions of Hamilton–Jacobi–Bellman Equations on Hypersurfaces. J Sci Comput 84, 43 (2020). https://doi.org/10.1007/s10915-020-01292-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01292-z

Keywords

Mathematics Subject Classification

Navigation