Skip to main content
Log in

An Ultra-Weak Discontinuous Galerkin Method with Implicit–Explicit Time-Marching for Generalized Stochastic KdV Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, an ultra-weak discontinuous Galerkin (DG) method is developed to solve the generalized stochastic Korteweg–de Vries (KdV) equations driven by a multiplicative temporal noise. This method is an extension of the DG method for purely hyperbolic equations and shares the advantage and flexibility of the DG method. Stability is analyzed for the general nonlinear equations. The ultra-weak DG method is shown to admit the optimal error of order \(k+1\) in the sense of the spatial \(L^2(0,2\pi )\)-norm for semi-linear stochastic equations, when polynomials of degree \(k\ge 2\) are used in the spatial discretization. A second order implicit–explicit derivative-free time discretization scheme is also proposed for the matrix-valued stochastic ordinary differential equations derived from the spatial discretization. Numerical examples using Monte Carlo simulation are provided to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit-explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  2. Bona, J.L., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comput. 82, 1401–1432 (2013)

    Article  MathSciNet  Google Scholar 

  3. Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)

    Article  MathSciNet  Google Scholar 

  4. Chang, H.Y., Lien, C., Sukarto, S., Raychaudhury, S., Hill, J., Tsikis, E.K., Lonngren, K.E.: Propagation of ion-acoustic solitons in a non-quiescent plasma. Plasma Phys. Controlled Fusion 28, 675–681 (1986)

    Article  Google Scholar 

  5. Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)

    Article  MathSciNet  Google Scholar 

  6. Ciarlet, P.: The Finite Element Method for Elliptic Problem. North Holland, Amsterdam (1975)

    Google Scholar 

  7. Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case. Math. Comput. 54(190), 545–581 (1990)

    MathSciNet  MATH  Google Scholar 

  8. Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems. J. Comput. Phys. 84, 90–113 (1989)

    Article  MathSciNet  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection P1-discontinuous Galerkin method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    Article  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  13. Dankel Jr., T.: On the stochastic Korteweg–de Veries equation driven by white noise. Differ. Integral Equ. 13, 827–836 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Debussche, A., Printems, J.: Numerical simulation of the stochastic Korteweg–de Vries equation. Physica D 134, 200–226 (1999)

    Article  MathSciNet  Google Scholar 

  15. de Bouard, A., Debussche, A.: On the stochastic Korteweg–de Vries equation. J. Funct. Anal. 154, 215–251 (1998)

    Article  MathSciNet  Google Scholar 

  16. de Bouard, A., Debussche, A., Tsutsumi, Y.: Periodic solutions of the Korteweg–de Vries equation driven by white noise. SIAM J. Math. Anal. 36(3), 815–855 (2004)

    Article  MathSciNet  Google Scholar 

  17. Gao, P.: The stochastic Korteweg–de Vries equation on a bounded domain. Appl. Math. Comput. 310, 97–111 (2017)

    MathSciNet  MATH  Google Scholar 

  18. Herman, R.: The stochastic, damped Korteweg–de Vries equation. J. Phys. A Math. Gen. 23, 1063–1084 (1990)

    Article  Google Scholar 

  19. Kloeden, P., Platen, E.: Numerical Solution of Stochastic Differential Equations, 3rd ed., Vol. 23, Applications in Mathematics, Stochastic Modeling and Applied Probability, Springer, Berlin (1999)

  20. Korteweg, D.J., de Veries, G.: On the change of form of long waves advancing in rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  21. Li, Y., Shu, C.-W., Tang, S.: A discontinuous Galerkin method for stochastic conservation laws. SIAM J. Sci. Comput. 42(1), A54–A86 (2020)

    Article  MathSciNet  Google Scholar 

  22. Li, Y., Shu, C.-W., Tang, S.: A local discontinuous Galerkin method for nonlinear parabolic SPDEs, submitted

  23. Lin, G., Grinberg, L., Karniadakis, G.E.: Numerical studies of the stochastic Korteweg–de Vries equation. J. Comput. Phys. 213(2), 676–703 (2006)

    Article  MathSciNet  Google Scholar 

  24. Mao, X.: Stochastic Differential Equations and Applications, 2nd edn. Horwood, Chichester (2008)

    Book  Google Scholar 

  25. Milstein, G.N.: Numerical Integration of Stochastic Differential Equations, Mathematics and its Applications, vol. 313. Kluwer Academic Publishers Group, Dordrecht, 1995 (Translated and revised from the 1988 Russian original) (1995)

  26. Milstein, G.N., Tretyakov, M.V.: Stochastic Numerics for Mathematical Physics, 1st ed., Scientific Computation series, Springer, Berlin (2004)

  27. Protter, P.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2004)

    MATH  Google Scholar 

  28. Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation, Technical report, Los Alamos Scientific Lab., N. Mex. (USA) (1973)

  29. Rose, A.: Numerical Simulations of the Stochastic KdV Equation. University of North Carolina, Wilmington (2006)

    Google Scholar 

  30. Scalerandi, M., Romano, A., Condat, C.A.: Korteweg–de Vries solitons under additive stochastic perturbations. Phys. Rev. E 58, 4166–4173 (1998)

    Article  Google Scholar 

  31. Shu, C.-W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: Basics, recent developments and comparison with other methods, In: Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations, Springer, pp. 369-397 (2016)

  32. Wang, H.-J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit-explicit time-marching for nonlinear convection-diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Yi, N., Huang, Y., Liu, H.: A direct discontinuous Galerkin method for the generalized Korteweg–de Vries equation: energy conservation and boundary effect. J. Comput. Phys. 242, 351–366 (2013)

    Article  MathSciNet  Google Scholar 

  34. Zabusky, N.J.: A Synergetic Approach to Problems of Nonlinear Dispersive Wave Propagation and Interaction, Nonlinear Partial Differential Equations. Academic Press, New York (1967)

    MATH  Google Scholar 

  35. Zhang, Q., Shu, C.-W.: Error estimates to smooth solutions of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would thank both reviewers and the editor for their careful reading and kind comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunzhang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of the first and the third authors was supported by National Key R&D Program of China (Grant No. 2018YFA0703900) and National Natural Science Foundation of China (Grant No. 11631004). The work of the second author was supported by ARO Grant W911NF-16-1-0103 and NSF Grant DMS-1719410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Shu, CW. & Tang, S. An Ultra-Weak Discontinuous Galerkin Method with Implicit–Explicit Time-Marching for Generalized Stochastic KdV Equations. J Sci Comput 82, 61 (2020). https://doi.org/10.1007/s10915-020-01162-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01162-8

Keywords

Mathematics Subject Classification

Navigation