Skip to main content
Log in

Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion Problems

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

Local discontinuous Galerkin methods with generalized alternating numerical fluxes coupled with implicit–explicit time marching for solving convection–diffusion problems is analyzed in this paper, where the explicit part is treated by a strong-stability-preserving Runge–Kutta scheme, and the implicit part is treated by an L-stable diagonally implicit Runge–Kutta method. Based on the generalized alternating numerical flux, we establish the important relationship between the gradient and interface jump of the numerical solution with the independent numerical solution of the gradient, which plays a key role in obtaining the unconditional stability of the proposed schemes. Also by the aid of the generalized Gauss–Radau projection, optimal error estimates can be shown. Numerical experiments are given to verify the stability and accuracy of the proposed schemes with different numerical fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25, 151–167 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MathSciNet  Google Scholar 

  4. Burman, E., Ern, A.: Implicit–explicit Runge–Kutta schemes and finite elements with symmetric stabilization for advection–diffusion equations. ESAIM: M2AN 46, 681–707 (2012)

    Article  MathSciNet  Google Scholar 

  5. Calvo, M.P., de Frutos, J., Novo, J.: Linearly implicit Runge–Kutta methods for advection–reaction–diffusion equations. Appl. Numer. Math. 37, 535–549 (2001)

    Article  MathSciNet  Google Scholar 

  6. Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for the convection–diffusion problems. Math. Comput. 71, 455–478 (2001)

    Article  MathSciNet  Google Scholar 

  7. Cheng, Y., Meng, X., Zhang, Q.: Application of generalized Gauss–Radau projections for the local discontinuous Galerkin method for linear convection–diffusion equations. Math. Comput. 305, 1233–1267 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Zhang, Q.: Local analysis of the local discontinuous Galerkin method with generalized alternating numerical flux for one-dimensional singularity perturbed problem. J. Sci. Comput. 72, 792–819 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chou, C.-S., Shu, C.-W., Xing, Y.L.: Optimal energy conserving local discontinuous Galerkin methods for second-order wave equation in heterogeneous media. J. Comput. Phys. 272, 88–107 (2014)

    Article  MathSciNet  Google Scholar 

  10. Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier–Stokes equations. Math. Comput. 74, 1067–1095 (2005)

    Article  MathSciNet  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)

    Article  MathSciNet  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations. Posts and Telecom Press, Beijing (2011)

    MATH  Google Scholar 

  13. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)

    Article  MathSciNet  Google Scholar 

  14. Guo, H., Yu, F., Yang, Y.: Local discontinuous Galerkin method for incompressible miscible displacement problem in porous media. J. Sci. Comput. 71, 615–633 (2017)

    Article  MathSciNet  Google Scholar 

  15. Guo, R., Filbet, F., Xu, Y.: Efficient high order semi-implicit time discretization and local discontinuous Galerkin methods for highly nonlinear PDEs. J. Sci. Comput. 68, 1029–1054 (2016)

    Article  MathSciNet  Google Scholar 

  16. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential–Algebraic Problems. Springer, New York (1991)

    Book  Google Scholar 

  17. Herty, M., Pareschi, L., Steffensen, S.: Implicit–explicit Runge–Kutta schemes for numerical discretization of optimal control problems. SIAM J. Numer. Anal. 51, 1875–1899 (2013)

    Article  MathSciNet  Google Scholar 

  18. Higueras, I., Happenhofer, N., Koch, O., Kupka, F.: Optimized strong stability preserving IMEX Runge–Kutta methods. J. Comput. Appl. Math. 272, 116–140 (2014)

    Article  MathSciNet  Google Scholar 

  19. Kupka, F., Happenhofer, N., Higueras, I., Koch, O.: Total-variation-diminishing implicit–explicit Runge–Kutta methods for the simulation of double-diffusive convection in astrophysics. J. Comput. Phys. 231, 3561–3586 (2012)

    Article  Google Scholar 

  20. Li, Q., He, Y.L., Wang, Y., Tao, W.Q.: Coupled double-distribution-function lattice Boltzmann method for the compressible Navier–Stokes equations. Phys. Rev. E 76, 056705 (2007)

    Article  MathSciNet  Google Scholar 

  21. Li, X., Shu, C.-W., Yang, Y.: Local discontinuous Galerkin methods for Keller–Segel chemotaxis model. J. Sci. Comput. 73, 943–967 (2017)

    Article  MathSciNet  Google Scholar 

  22. Liu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for moment models in device simulations: formulation and one dimensional results. J. Comput. Electron. 3, 263–267 (2004)

    Article  Google Scholar 

  23. Liu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for moment models in device simulations: performance assessment and two dimensional results. Appl. Numer. Math. 57, 629–645 (2007)

    Article  MathSciNet  Google Scholar 

  24. Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85, 1225–1261 (2016)

    Article  MathSciNet  Google Scholar 

  25. Pareschi, L., Russo, G.: Implicit–explicit Runge–Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Pieraccini, S., Puppo, G.: Implicit–explicit schemes for BGK kinetic equations. J. Sci. Comput. 32, 1–28 (2007)

    Article  MathSciNet  Google Scholar 

  27. Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability, numerical solutions of partial differential equations. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Advanced Courses in Mathematics CRM Barcelona, pp. 149–201. Basel, Birkhäuser (2009)

    Google Scholar 

  28. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock capturing schemes. J. Comput. Phys. 77, 439–471 (1988)

    Article  MathSciNet  Google Scholar 

  29. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for advection–diffusion problems. SIAM J. Numer. Anal. 53, 206–227 (2015)

    Article  MathSciNet  Google Scholar 

  30. Wang, H.J., Shu, C.-W., Zhang, Q.: Stability analysis and error estimates of local discontinuous Galerkin methods with implicit–explicit time-marching for nonlinear convection–diffusion problems. Appl. Math. Comput. 272, 237–258 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Wang, H.J., Wang, S.P., Zhang, Q., Shu, C.-W.: Local discontinuous Galerkin methods with implicit–explicit time-marching for multi-dimensional convection–diffusion problems. ESAIM: M2AN 50, 1083–1105 (2016)

    Article  MathSciNet  Google Scholar 

  32. Wang, H.J., Zhang, Q.: Error estimate on a fully discrete local discontinuous Galerkin method for linear convection–diffusion problem. J. Comput. Math. 31, 283–307 (2013)

    Article  MathSciNet  Google Scholar 

  33. Wang, H.J., Zhang, Q., Shu, C.-W.: Third order implicit–explicit Runge–Kutta local discontinuous Galerkin methods with suitable boundary treatment for convection–diffusion problems with Dirichlet boundary conditions. J. Comput. Appl. Math. 342, 164–179 (2018)

    Article  MathSciNet  Google Scholar 

  34. Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)

    MathSciNet  MATH  Google Scholar 

  35. Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17, 27–47 (2002)

    Article  MathSciNet  Google Scholar 

  36. Zhang, Q., Gao, F.Z.: A fully-discrete local discontinuous Galerkin method for convection-dominated Sobolev equation. J. Sci. Comput. 51, 107–134 (2012)

    Article  MathSciNet  Google Scholar 

  37. Zhang, Q., Shu, C.-W.: Error estimates to smooth solution of Runge–Kutta discontinuous Galerkin methods for scalar conservation laws. SIAM J. Numer. Anal. 42, 641–666 (2004)

    Article  MathSciNet  Google Scholar 

  38. Zhang, Q., Shu, C.-W.: Stability analysis and a priori error estimates of the third order explicit Runge–Kutta discontinuous Galerkin method for scalar conservation laws. SIAM J. Numer. Anal 48, 1038–1064 (2010)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Q., Wu, Z.: Numerical simulation for porous medium equation by local discontinuous Galerkin finite element method. J. Sci. Comput. 38, 127–148 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

H. Wang: Research sponsored by NSFC Grants 11601241 and 11871428, Natural Science Foundation of Jiangsu Province Grant BK20160877. Q. Zhang: Research supported by NSFC Grants 11671199 and 11571290. C.-W. Shu: Research supported by NSF Grant DMS-1719410.

7 Appendix

7 Appendix

Proof of (4.7)

Firstly, by Taylor’s expansion

$$\begin{aligned} U^{n+1}=U^n + \tau U_t^n +\frac{\tau ^2}{2}U_{tt}^n + \frac{\tau ^3}{6}U_{ttt}(t_{\xi }), \end{aligned}$$

where \(t_{\xi }\in (t^n,t^{n+1})\) and we omit the argument x for simplicity. Secondly, notice that

$$\begin{aligned} U^{n,1}&=\,U^n +\gamma \tau \sqrt{d}Q_x^{n,1},\\ U^{n,2}&=\,U^n + \tau U_t^{n,1} -2\gamma \tau \sqrt{d}Q_{x}^{n,1} + \gamma \tau \sqrt{d}Q_{x}^{n,2}, \end{aligned}$$

and then

$$\begin{aligned}&\,U^{n}-\frac{\tau }{2}c(U^{n,1}_x+U^{n,2}_x)+\frac{\tau }{2}\sqrt{d}(Q^{n,1}_x+Q^{n,2}_x) \\&\quad =\,U^n + \frac{\tau }{2}U_t^{n,1}+\frac{\tau }{2}U_t^{n,2} \\&\quad =\,U^n + \tau U_t^n +\frac{\tau ^2}{2}U_{tt}^{n,1}+\frac{\gamma \tau ^2}{2}(Q_{xt}^{n,2}-Q_{xt}^{n,1}) \\&\quad =\,U^n + \tau U_t^n +\frac{\tau ^2}{2}U_{tt}^{n}+\frac{\gamma \tau ^3}{2}\sqrt{d}Q_{xtt}^{n,1} +\frac{\gamma \tau ^2}{2} \sqrt{d}(Q_{xt}^{n,2}-Q_{xt}^{n,1}). \end{aligned}$$

As a result

$$\begin{aligned} \zeta ^n&=\,\frac{\tau ^3}{6}U_{ttt}(x,t_{\xi })-\frac{\gamma \tau ^3}{2}\sqrt{d}Q_{xtt}^{n,1} -\frac{\gamma \tau ^2}{2}\sqrt{d}(Q_{xt}^{n,2}-Q_{xt}^{n,1}) \\&=\, \frac{\tau ^3}{6}U_{ttt}(x,t_{\xi })-\frac{\gamma \tau ^3}{2}( U_{ttt}^{n,1}+cU_{xtt}^{n,1}) -\frac{\gamma \tau ^2}{2} [(U^{n,2}-U^{n,1})_{tt}+c(U^{n,2}-U^{n,1})_{xt}). \end{aligned}$$

Since

$$\begin{aligned} U^{n,2}-U^{n,1}&=\, \tau U_t^{n,1} -3\gamma \tau \sqrt{d}Q_x^{n,1} +\gamma \tau \sqrt{d}Q_x^{n,2} \\&=\, \tau U_t^{n,1} -3\gamma \tau (U_t^{n,1}+cU_x^{n,1})+\gamma \tau (U_t^{n,2}+cU_x^{n,2}). \end{aligned}$$

We get \(\Vert \zeta ^n\Vert = {\mathcal {O}}(\tau ^3)\) if \(U_{ttt},U_{xtt},U_{xxt}\in L^{\infty }(0,T;L^2)\).

Proof of Lemma 4.2

By taking \(v=2\xi _u^{n,1}\) in (4.12a) and \(v=2\xi _u^{n,2}\) in (4.12b), we get from (2.10) and (4.13b) that

$$\begin{aligned} \Vert \xi _u^{n,1}\Vert ^2+\Vert \xi _u^{n,1}-\xi _u^n\Vert ^2 - \Vert \xi _u^n\Vert ^2&=\,-2\gamma \tau \Vert \xi _q^{n,1}\Vert ^2 +2(\eta _u^{n,1}-\eta _u^n,\xi _u^{n,1}), \end{aligned}$$
(7.1)
$$\begin{aligned} \Vert \xi _u^{n,2}\Vert ^2+\Vert \xi _u^{n,2}-\xi _u^n\Vert ^2 - \Vert \xi _u^n\Vert ^2&=\,2\tau {\mathcal {H}}(\xi _u^{n,1},\xi _u^{n,2}) +2(\eta _u^{n,2}-\eta _u^n,\xi _u^{n,2}) \nonumber \\&\quad -2(1-2\gamma )\tau (\xi _q^{n,1},\xi _q^{n,2}) -2\gamma \tau \Vert \xi _q^{n,2}\Vert ^2 \nonumber \\&\quad +2(1-2\gamma )\tau (\eta _q^{n,1},\xi _q^{n,2}) +2\gamma \tau (\eta _q^{n,2},\xi _q^{n,2}). \end{aligned}$$
(7.2)

Hence applying Young’s inequality yields

$$\begin{aligned} \Vert \xi _u^{n,1}\Vert ^2 \le 2( \Vert \xi _u^n\Vert ^2 - 2\gamma \tau \Vert \xi _q^{n,1}\Vert ^2) + C h^{2k+2}\tau ^2. \end{aligned}$$
(7.3)

Using (4.16) for the term \(2\tau {\mathcal {H}}(\xi _u^{n,1},\xi _u^{n,2})\), applying Cauchy–Schwarz inequality and Young’s inequality for the remaining terms, we get

$$\begin{aligned} \Vert \xi _u^{n,2}\Vert ^2&\le \,\Vert \xi _u^n\Vert ^2 + C \frac{c}{\sqrt{d}} \tau (\Vert \xi _q^{n,2}\Vert +h^{k+1})\Vert \xi _u^{n,1}\Vert +C h^{k+1}\tau \Vert \xi _u^{n,2}\Vert \nonumber \\&\quad -2(1-2\gamma )\tau (\xi _q^{n,1},\xi _q^{n,2})-2\gamma \tau \Vert \xi _q^{n,2}\Vert ^2 + C h^{k+1}\tau \Vert \xi _q^{n,2}\Vert \nonumber \\&\le \, \Vert \xi _u^n\Vert ^2 +\Vert \xi _u^{n,1}\Vert ^2 + \frac{C c^2\tau }{2d}\tau \Vert \xi _q^{n,2}\Vert ^2 + \frac{1}{2}\Vert \xi _u^{n,2}\Vert ^2+Ch^{2k+2}\tau \nonumber \\&\quad -2(1-2\gamma )\tau (\xi _q^{n,1},\xi _q^{n,2})-(2\gamma -\varepsilon ) \tau \Vert \xi _q^{n,2}\Vert ^2. \end{aligned}$$
(7.4)

So taking \(\varepsilon =\frac{\gamma }{2}\) and letting \(\frac{C c^2\tau }{2d} \le \frac{\gamma }{2}\), we get

$$\begin{aligned} \Vert \xi _u^{n,2}\Vert ^2&\le \, 6\Vert \xi _u^n\Vert ^2 -2\tau [4\gamma \Vert \xi _q^{n,1}\Vert ^2+2(1-2\gamma )(\xi _q^{n,1},\xi _q^{n,2}) +\gamma \Vert \xi _q^{n,2}\Vert ^2]+ Ch^{2k+2}\tau \nonumber \\&\le \, 6\Vert \xi _u^{n}\Vert ^2+Ch^{2k+2}\tau , \end{aligned}$$
(7.5)

if \(\gamma \in [\gamma _1,\gamma _2]\). Thus the lemma is proved. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Q. & Shu, CW. Implicit–Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection–Diffusion Problems. J Sci Comput 81, 2080–2114 (2019). https://doi.org/10.1007/s10915-019-01072-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-019-01072-4

Keywords

Mathematics Subject Classification

Navigation