Skip to main content
Log in

Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we construct a family of modified Patankar Runge–Kutta methods, which is conservative and unconditionally positivity-preserving, for production–destruction equations, and derive necessary and sufficient conditions to obtain second-order accuracy. This ordinary differential equation solver is then extended to solve a class of semi-discrete schemes for PDEs. Combining this time integration method with the positivity-preserving finite difference weighted essentially non-oscillatory (WENO) schemes, we successfully obtain a positivity-preserving WENO scheme for non-equilibrium flows. Various numerical tests are reported to demonstrate the effectiveness of the methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Burchard, H., Deleersnijder, E., Meister, A.: A high-order conservative Patankar-type discretisation for stiff systems of production-destruction equations. Appl. Numer. Math. 47(1), 1–30 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Steady state and sign preserving semi-implicit Runge–Kutta methods for ODEs with stiff damping term. SIAM J. Numer. Anal. 53(4), 2008–2029 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chertock, A., Cui, S., Kurganov, A., Wu, T.: Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms. Int. J. Numer. Methods Fluids 78(6), 355–383 (2015)

    Article  MathSciNet  Google Scholar 

  4. Formaggia, L., Scotti, A.: Positivity and conservation properties of some integration schemes for mass action kinetics. SIAM J. Numer. Anal. 49(3), 1267–1288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  7. Hu, J., Shu, R., Zhang, X.: Asymptotic-preserving and positivity-preserving implicit–explicit schemes for the stiff BGK equation. SIAM J. Numer. Anal. 56(2), 942–973 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huang, J., Shu, C.-W.: A second-order asymptotic-preserving and positivity-preserving discontinuous Galerkin scheme for the Kerr–Debye model. Math. Models Methods Appl. Sci. 27(03), 549–579 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, J., Shu, C.-W.: Bound-preserving modified exponential Runge–Kutta discontinuous Galerkin methods for scalar hyperbolic equations with stiff source terms. J. Comput. Phys. 361, 111–135 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kopecz, S., Meister, A.: On order conditions for modified Patankar–Runge–Kutta schemes. Appl. Numer. Math. 123, 159–179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kopecz, S., Meister, A.: Unconditionally positive and conservative third order modified Patankar–Runge–Kutta discretizations of production–destruction systems. BIT Numer. Math. 58, 691–728 (2018). https://doi.org/10.1007/s10543-018-0705-1

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, X.-D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meister, A., Ortleb, S.: On unconditionally positive implicit time integration for the DG scheme applied to shallow water flows. Int. J. Numer. Methods Fluids 76(2), 69–94 (2014)

    Article  MathSciNet  Google Scholar 

  14. Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, London (1980)

    MATH  Google Scholar 

  15. Shu, C.-W.: Essentially Non-oscillatory and Weighted Essentially Non-oscillatory Schemes for Hyperbolic Conservation Laws, pp. 325–432. Springer, Berlin (1998)

    MATH  Google Scholar 

  16. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1989)

    Article  MATH  Google Scholar 

  17. Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, C., Zhang, X., Shu, C.-W., Ning, J.: Robust high order discontinuous Galerkin schemes for two-dimensional gaseous detonations. J. Comput. Phys. 231(2), 653–665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45(5), 1871–1901 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, W., Shu, C.-W., Yee, H., Sjögreen, B.: High-order well-balanced schemes and applications to non-equilibrium flow. J. Comput. Phys. 228(18), 6682–6702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangular meshes. J. Sci. Comput. 57(1), 19–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xing, Y., Zhang, X., Shu, C.-W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010)

    Article  Google Scholar 

  23. Zhang, X.: On positivity-preserving high order discontinuous Galerkin schemes for compressible navier-stokes equations. J. Comput. Phys. 328, 301–343 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, X., Shu, C.-W.: On maximum-principle-satisfying high order schemes for scalar conservation laws. J. Comput. Phys. 229(9), 3091–3120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229(23), 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, X., Shu, C.-W.: Positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations with source terms. J. Comput. Phys. 230(4), 1238–1248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X., Shu, C.-W.: Positivity-preserving high order finite difference WENO schemes for compressible Euler equations. J. Comput. Phys. 231(5), 2245–2258 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y., Zhang, X., Shu, C.-W.: Maximum-principle-satisfying second order discontinuous Galerkin schemes for convection–diffusion equations on triangular meshes. J. Comput. Phys. 234, 295–316 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Xiangxiong Zhang from Purdue University and Tao Xiong from Xiamen University for many fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juntao Huang.

Additional information

Research supported by ARO Grant W911NF-15-1-0226 and NSF Grant DMS-1719410.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Shu, CW. Positivity-Preserving Time Discretizations for Production–Destruction Equations with Applications to Non-equilibrium Flows. J Sci Comput 78, 1811–1839 (2019). https://doi.org/10.1007/s10915-018-0852-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0852-1

Keywords

Navigation