Skip to main content
Log in

Simulating Compressible Two-Medium Flows with Sharp-Interface Adaptive Runge–Kutta Discontinuous Galerkin Methods

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A cut cell based sharp-interface Runge–Kutta discontinuous Galerkin method, with quadtree-like adaptive mesh refinement, is developed for simulating compressible two-medium flows with clear interfaces. In this approach, the free interface is represented by curved cut faces and evolved by solving the level-set equation with high order upstream central scheme. Thus every mixed cell is divided into two cut cells by a cut face. The Runge–Kutta discontinuous Galerkin method is applied to calculate each single-medium flow governed by the Euler equations. A two-medium exact Riemann solver is applied on the cut faces and the Lax–Friedrichs flux is applied on the regular faces. Refining and coarsening of meshes occur according to criteria on distance from the material interface and on magnitudes of pressure/density gradient, and the solutions and fluxes between upper-level and lower-level meshes are synchronized by \(L^2\) projections to keep conservation and high order accuracy. This proposed method inherits the advantages of the discontinuous Galerkin method (compact and high order) and cut cell method (sharp interface and curved cut face), thus it is fully conservative, consistent, and is very accurate on both interface and flow field calculations. Numerical tests with a variety of parameters illustrate the accuracy and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148, 2–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bai, X., Deng, X.-L.: A sharp interface method for compressible multi-phase flows based on the cut cell and ghost fluid methods. Adv. Appl. Math. Mech. 9(5), 1052–1075 (2017)

    Article  MathSciNet  Google Scholar 

  3. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 482–512 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berger, M.J., Colella, P.: Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 67–84 (1989)

    Article  MATH  Google Scholar 

  5. Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100, 335–354 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, C.-H., Liou, M.S.: A robust and accurate approach to computing compressible multiphase flow: stratified flow model and \(AUSM^{+}\)-up scheme. J. Comput. Phys. 225, 840–873 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chang, C.-H., Deng, X., Theofanous, T.G.: Direct numerical simulation of interfacial instabilities: a consistent, conservative, all-speed, sharp-interface method. J. Comput. Phys. 242, 946–990 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cheng, Y., Li, F., Qiu, J., Xu, L.: Positivity-preserving DG and central DG methods for ideal MHD equations. J. Comput. Phys. 238, 255–280 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for scalar conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)

    MATH  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection P1-discontinuous Galerkin method for scalar conservation laws. Math. Model. Numer. Anal. 25, 337–361 (1991)

    Article  MATH  Google Scholar 

  11. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V Multidimensional systems. J. Comp. Phys. 141, 199–224 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dong, S.: An outflow boundary condition and algorithm for incompressible two-phase flows with phase field approach. J. Comp. Phys. 266, 47–73 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fechter, S., Munz, C.-D.: A discontinuous Galerkin-based sharp-interface method to simulate three-dimensional compressible two-phase flow. Int. J. Numer. Meth. Fluids 78, 413–435 (2015)

    Article  MathSciNet  Google Scholar 

  15. Fedkiw, R.P., Aslam, T., Merriman, B., Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152, 457–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fyfe, D.E., Oran, E.S., Fritts, M.J.: Surface tension and viscosity with Lagrangian Hydrodynamics on a triangular mesh. J. Comput. Phys. 76, 349–384 (1988)

    Article  MATH  Google Scholar 

  17. Glimm, J., Grove, J.W., Li, X.L., Shyue, K.-M., Zeng, Y., Zhang, Q.: Three-dimensional front tracking. SIAM J. Sci. Comput. 19, 703–727 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Glimm, J., Grove, J.W., Li, X.L., Oh, W., Sharp, D.H.: A critical analysis of Rayleigh–Taylor growth rates. J. Comput. Phys. 169, 652–677 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glimm, J., Li, X., Liu, Y., Xu, Z., Zhao, N.: Conservative front tracking with improved accuracy. SIAM J. Numer. Anal. 41(5), 1926–1947 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grove, J., Menikoff, R.: Anomalous reflection of a shock wave at a fluid interface. J. Fluid Mech. 219, 313–336 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  21. Haas, J.-F., Sturtevant, B.: Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 41–76 (1987)

    Article  Google Scholar 

  22. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  23. Hu, X.Y., Khoo, B.C.: An interface interaction method for compressible multifluids. J. Comput. Phys. 198, 35–64 (2004)

    Article  MATH  Google Scholar 

  24. Hu, X.Y., Khoo, B.C., Adams, N.A., Huang, F.L.: A conservative interface method for compressible flows. J. Comput. Phys. 219, 553–578 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715–732 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lin, J.-Y., Shen, Y., Ding, H., Liu, N.-S., Lu, X.-Y.: Simulation of compressible two-phase flows with topology change of fluid? Fluid interface by a robust cut-cell method. J. Comp. Phys. 328, 140–159 (2017)

    Article  MathSciNet  Google Scholar 

  27. Liu, T.G., Khoo, B.C., Yeo, K.S.: The simulation of compressible multi-medium flow. Part II: applications to 2D underwater shock refraction. Comput. Fluids 30, 315–337 (2001)

    Article  Google Scholar 

  28. Liu, T.G., Khoo, B.C., Yeo, K.S.: Ghost fluid method for strong shock impacting on material interface. J. Comput. Phys. 190, 651–681 (2003)

    Article  MATH  Google Scholar 

  29. Liu, T.G., Khoo, B.C., Wang, C.W.: The ghost fluid method for compressible gas–water simulation. J. Comput. Phys. 204, 193–221 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, T.G., Khoo, B.C.: The accuracy of the modified ghost fluid method for gas-gas Riemann problem. Applied Num. Math. 57, 721–733 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Nourgaliev, R.R., Dinh, T.N., Theofanous, T.G.: Adaptive characteristic-based matching for compressible multifluid dynamics. J. Comput. Phys. 213, 500–529 (2006)

    Article  MATH  Google Scholar 

  32. Nourgaliev, R.R., Theofanous, T.G.: High-fidelity interface tracking in compressible flows: unlimited anchored adaptive level set. J. Comput. Phys. 224, 836–866 (2007)

    Article  MATH  Google Scholar 

  33. Nourgaliev, R.R., Liou, M.-S., Theofanous, T.G.: Numerical prediction of interfacial instabilities: sharp interface method (SIM). J. Comput. Phys. 227, 3940–3970 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Qiu, J.X., Liu, T.G., Khoo, B.C.: Runge–Kutta discontinuous Galerkin methods for compressible two-medium flow simulations: one dimensional case. J. Comput. Phys. 222, 353–373 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Qiu, J.X., Liu, T.G., Khoo, B.C.: Simulations of compressible two-medium flow by Runge–Kutta discontinuous Galerkin methods with the ghost fluid method. Commun. Comput. Phys. 3, 479–504 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Quirk, J.J., Karni, S.: On the dynamics of a shock–bubble interaction. J. Fluid Mech. 318, 129–163 (1996)

    Article  MATH  Google Scholar 

  37. Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

  38. Schlottke, J., Weigand, B.: Direct numerical simulation of evaporating droplets. J. Comput. Phys. 227, 5215–5237 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sun, H., Darmofal, D.L.: An adaptive simplex cut-cell method for high-order discontinuous Galerkin discretizations of elliptic interface problems and conjugate heat transfer problems. J. Comput. Phys. 278, 445–468 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sussman, M., Puckett, E.G.: A coupled level set and volume-of fluid method for computing 3D and axisymmetric incompressible two-phase flows. J. Comput. Phys. 162, 301–337 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tao, L., Deng, X.-L.: Simulating the linearly elastic solid–solid interaction with a cut cell method. Int. J. Comp. Meth. 14(2), 1750072 (2017)

    Article  MathSciNet  Google Scholar 

  42. Terashima, H., Tryggvason, G.: A front-tracking/ghost-fluid method for fluid interfaces in compressible flows. J. Comput. Phys. 228, 4012–4037 (2009)

    Article  MATH  Google Scholar 

  43. Torres, D.J., Brackbill, J.U.: The point-set method: front-tracking without connectivity. J. Comput. Phys. 165, 620–644 (2000)

    Article  MATH  Google Scholar 

  44. Ullah, M.A., Gao, W.B., Mao, D.K.: Towards front-tracking based on conservation in two space dimensions III tracking interfaces. J. Comput. Phys. 242, 268–303 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Wang, C., Shu, C.-W.: An interface treating technique for compressible multi-medium flow with Runge–Kutta discontinuous Galerkin method. J. Comput. Phys. 229, 8823–8843 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  46. Xing, Y., Zhang, X.: Positivity-preserving well-balanced discontinuous Galerkin methods for the shallow water equations on unstructured triangle meshes. J. Sci. Comput. 57, 19–41 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, X., Shu, C.-W.: On positivity-preserving high order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes. J. Comput. Phys. 229, 8918–8934 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhao, H.-K., Chan, T., Merriman, B., Osher, S.: A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179–195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the supports from National Science Foundation of China (NSFC, Grant Nos. 91230203, 11202020 and U1530401) and President Foundation of Chinese Academy of Engineering Physics (Grant No. 201501043). Dr. Maojun Li is partially supported by the NSFC (Grant Nos. 11501062, 91630205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Long Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, XL., Li, M. Simulating Compressible Two-Medium Flows with Sharp-Interface Adaptive Runge–Kutta Discontinuous Galerkin Methods. J Sci Comput 74, 1347–1368 (2018). https://doi.org/10.1007/s10915-017-0511-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0511-y

Keywords

Mathematics Subject Classification

Navigation