Skip to main content
Log in

Spectral Methods for Substantial Fractional Differential Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a non-polynomial spectral Petrov–Galerkin method and its associated collocation method for substantial fractional differential equations are proposed, analyzed, and tested. We modify a class of generalized Laguerre polynomials to form our trial basis and test basis. After a proper scaling of these bases, our Petrov–Galerkin method results in diagonal and well-conditioned linear systems for certain types of fractional differential equations. In the meantime, we provide superconvergence points of the Petrov–Galerkin approximation for associated fractional derivative and function value of true solution. Additionally, we present explicit fractional differential collocation matrices based upon Laguerre–Gauss–Radau points. It is noteworthy that the proposed methods allow us to adjust a parameter in the basis according to different given data to maximize the convergence rate. All these findings have been proved rigorously in our convergence analysis and confirmed in our numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baeumera, B., Meerschaertb, M.M.: Tempered stable Lvy motion and transient super-diffusion. J. Comp. Appl. Math. 233, 2438–2448 (2010)

    Article  Google Scholar 

  2. Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral methods: fundamentals in single domains. Springer-Verlag, Berlin (2006)

    MATH  Google Scholar 

  3. Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E. 84, 061104 (2011)

    Article  Google Scholar 

  4. Chen, M., Deng, W.: Discretized fractional substantial calculus. ESAIM: M2AN 49(2), 373–394 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Chen, S., Shen, J., Wang, L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comp. 85, 1603–1638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carmi, S., Turgeman, L., Barkai, E.: On distributions of functionals of anomalous diffusion paths. J. Stat. Phys. 141, 1071–1092 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diethelm, K., Ford, N., Freed, A.: Detailed error analysis for a fractional Adams method. Numer. Algorithms 36(1), 31–52 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)

    Article  Google Scholar 

  9. Guo, B., Shen, J., Wang, L.: Generalized Jacobi polynomials/functions and their applications. Appl. Numer. Math. 59, 1011–1028 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, B., Wang, L., Wang, Z.: Generalized Laguerre interpolation and pseudospectral method for unbounded domains. SIAM J. Numer. Anal. 43(6), 2567–2589 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hatano, Y., Hatano, N.: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resour. Res. 34(5), 1027–1033 (1998)

    Article  Google Scholar 

  12. Huang, C., Zhang, Z.: Convergence of a \(p\)-version/\(hp\)-version method for fractional differential equations. J. Comp. Phys. 286, 118–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klafter, J., Shlesinger, M.F., Zumofen, G.: Beyond brownian motion. Phys. Today 49(2), 33–39 (1996)

    Article  Google Scholar 

  14. Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comp. 84(296), 2665–2700 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, C., Deng, W.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42(3), 543–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Metzler, R., Klafter, J.: The random walk’s guide to anamalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  Google Scholar 

  17. Marom, O., Momoniat, E.: A comparison of numerical solutions of fractional diffusion models in finance. Nonl. Anal.: RWA 10, 3435–3442 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mustapha, K., McLean, W.: Uniform convergence for a discontinuous Galerkin, time-stepping method applied to a fractional diffusion equation. IMA J. Numer. Anal. 32(3), 906–925 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mustapha, K., McLean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51(1), 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Meerschaert, M., Sikorskii, A.: Stochastic models for fractional calculus, De Gruyter studies in mathematics, vol. 43 Walter de Gruyter, Berlin/Boston, (2012)

  21. Prudnikov, A.P., Brychkov, Yu.A. Marichev, O.I: Integrals and series, translated from the Russian by N.M. Queen, vol. 2, Gordon and Breach Science, New York, (1986)

  22. Podlubny, I.: Fractional differential equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  23. Shlesinger, M.F.: Levy walks with application to turbulence and chaos. Physica A 140(1–2), 212–218 (1986)

    Article  MathSciNet  Google Scholar 

  24. Shen, J., Tang, T., Wang, L.L.: Spectral methods: algorithms, analysis, and applications, Springer series in computational mathematics, vol. 41. Springer, Berlin, Heidelberg (2011)

  25. Szego, G.: Orthogonal polynomials, fourth (ed.) Amer. Math. Soc. Publ., vol.23, Providence, RI, (1975)

  26. Tajeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comp. Phys. 220, 813–823 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Trefethen, L.N.: Spectral methods in matlab. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  28. Turgeman, L., Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for non-brownian functionals. Phys. Rev. Lett. 103, 190201 (2009)

    Article  MathSciNet  Google Scholar 

  29. Li, X.J., Xu, C.: A space-time spectral method for the time-fractional diffusion equation. SIAM J. Numer. Anal. 47(3), 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lin, Y.M., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys. 225(2), 1533–1552 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zayernouri, M., Karniadakis, G.E.: Fractional spectral collocation method. SIAM J. Sci. Comput. 38, A40–A62 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comp. Phys. 257, 460–480 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Martin Stynes for his valuable comments when preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Can Huang.

Additional information

The research of Can Huang, is supported by National Natural Science Foundation of China under grant 11401500, 91630204 and the Fundamental Research Funds for the Central Universities under grant 20720150007.

The research of Zhimin Zhang, was supported in part by the National Natural Science Foundation of China under grants 11471031, 91430216, and the US National Science Foundation through grant DMS-1419040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, C., Zhang, Z. & Song, Q. Spectral Methods for Substantial Fractional Differential Equations. J Sci Comput 74, 1554–1574 (2018). https://doi.org/10.1007/s10915-017-0506-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0506-8

Keywords

Mathematics Subject Classification

Navigation