Skip to main content
Log in

Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a viscous regularization is derived for the non-equilibrium seven-equation two-phase flow model (SEM). This regularization, based on an entropy condition, is an artificial viscosity stabilization technique that selects a weak solution satisfying an entropy-minimum principle. The viscous regularization ensures nonnegativity of the entropy residual, is consistent with the viscous regularization for Euler equations when one phase disappears, does not depend on the spatial discretization scheme chosen, and is compatible with the generalized Harten entropies. We investigate the behavior of the proposed viscous regularization for two important limit-cases. First, a Chapman–Enskog expansion is performed for the regularized SEM and we show that the five-equation flow model of Kapila is recovered with a well-scaled viscous regularization. Second, a low-Mach asymptotic limit of the regularized seven-equation flow model is carried out whereby the scaling of the non-dimensional numbers associated with the viscous terms is determined such that an incompressible two-phase flow model, with a properly scaled regularization, is recovered. Both limit-cases are illustrated with one-dimensional numerical results, including two-phase flow shock tube tests and steady-state two-phase flows in converging-diverging nozzles. A continuous finite element discretization is employed for all numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alleges, F., Merlet, B.: Approximate shock curves for non-conservative hyperbolic systems in one space dimension. J. Hyperbolic Differ. Equ. 1(4), 769–788 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambroso, A., Chalons, C., Raviart, P.A.: A godunov-type method for the seven-equation model of compressible multiphase mixtures. Comput. Fluids 54, 67–91 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  5. Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)

    Article  MATH  Google Scholar 

  6. Berry, R., Saurel, R., LeMetayer, O.: The discrete equation method (DEM) for fully compressible, two-phase flows in ducts of spatially varying cross section. Nucl. Eng. Des. 240(11), 3797–3818 (2010)

    Article  Google Scholar 

  7. Berry, R.A.: Notes on well-posed, ensemble averaged conservation equations for multiphase, multi-component, and multi-material flows. Tech. rep., Idaho National Laboratory, Idaho Falls, ID (2003, 2005)

  8. Berry, R.A., Saurel, R., Petitpas, F.: A simple and efficient diffuse interface method for compressible two-phase flows. International Conference on Mathematics, Computational Methods and Reactor Physics (M&C 2009) (2009)

  9. Berry, R.A., Williamson, R.L.: A Multiphase Mixture Model for the Shock Induced Consolidation of Metal Powders in ’Shock Waves in Condensed Matter’. Plenum, New York (1985)

    Google Scholar 

  10. Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161(1), 223–342 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Coquel, F., Herard, J.M., Saleh, K., Seguin, N.: Two properties of two-velocity two-pressure models for two-phase flows. Commun. Math. Sci. 12(3), 593–600 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dal, M., LeFloch, G., Murat, P.: Definition and weak stability of a non-conservative product. J. Math. Pures Appl. 74(6), 483–548 (1995)

    MathSciNet  MATH  Google Scholar 

  13. Delchini, M.: Extension of the entropy viscosity method to multi-d Euler equations and the seven-equation two-phase model. Tech. rep., Texas A & M University, USA (2014)

  14. Delchini, M., Ragusa, J., Berry, R.: Entropy-based viscous regularization for the multi-dimensional Euler equations in low-Mach and transonic flows. Comput. Fluids 118, 225–244 (2015)

    Article  MathSciNet  Google Scholar 

  15. Dellacherie, S.: Relaxation schemes for the multicomponent Euler system. ESAIM Math. Modell. Numer. Anal. 37(6), 909–936 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Oxford University Press, Oxford (2003)

    Book  Google Scholar 

  17. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  18. Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  19. Gallouet, T., Herard, J.M., Seguin, N.: Numerical modeling of two-phase flows using the two-fluid two-pressure model. Math. Models Methods Appl. Sci. 14(5), 663–700 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gaston, D., Newsman, C., Hansen, G., Lebrun-Grandié, D.: A parallel computational framework for coupled systems of nonlinear equations. Nucl. Eng. Des. 239, 1768–1778 (2009)

    Article  Google Scholar 

  21. Guermond, J.L., Pasquetti, R.: Entropy-based nonlinear viscosity for Fourier approximations of conservation laws. Comptes Rendus Mathematique 346(13–14), 801–806 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guermond, J.L., Pasquetti, R.: Entropy viscosity method for high-order approximations of conservation laws. Lecture Notes Comput. Sci. Eng. 76, 411–418 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guermond, J.L., Pasquetti, R.: Entropy viscosity method for nonlinear conservation laws. J. Comput. Phys. 230(11), 4248–4267 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guermond, J.L., Popov, B.: Viscous regularization of the Euler equations and entropy principles. SIAM J. Appl. Math. 74(2), 284–305 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guillard, H., Murrone, A.: A five equation reduced model for compressible two-phase flow problems. J. Comput. Phys. 202(2), 664–698 (2003)

    MathSciNet  MATH  Google Scholar 

  26. Guillard, H., Viozat, C.: On the behavior of upwind schemes in the low-Mach number limit. Comput. Fluids 28(1), 63–86 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harten, A., Lax, P.D., Levermore, C.D., Morokoff, W.J.: Convex entropies and hyperbolicity for general Euler equations. SIAM J. Numer. Anal. 35(6), 2117–2127 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Herard, J.M., Hurisse, O.: A simple method to compute standard two-fluid models. Int. J. Comput. Fluid Dyn. 19(7), 475–482 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modelling of deflagration-to-detonation transition in granular materials. Phys. Fluids 13, 3002–3024 (2001)

    Article  MATH  Google Scholar 

  30. Lapidus, A.: A detached shock calculation by second order finite differences. J. Comput. Phys. 2(2), 154–177 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lax, P.D.: Hyperbolic Systems of Conservation Laws and The Mathematical Theory of Shock Waves. New York University, New York (1973)

    Book  MATH  Google Scholar 

  32. LeFloch, G.: Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form. Comm. Partial Differ. Eq. 13(6), 669–727 (1988)

    Article  MathSciNet  Google Scholar 

  33. LeFloch, G.: Shock Waves for Nonlinear Hyperbolic Systems in Nonconservative Forms. Tech. rep, Institute for Mathematics and its Applications, Minneapolis, MN (1989)

    Google Scholar 

  34. LeFloch, G., Liu, T.P.: Existence theory for nonlinear hyperbolic systems in nonconservative form. Forum Math. 5(5), 261–280 (1993)

    MathSciNet  Google Scholar 

  35. Lellis, C.D., Otto, F., Westdickenberg, M.: Minimal entropy conditions for Burgers equation. Quart. Appl. Math. 62(4), 687–700 (2004)

    MathSciNet  MATH  Google Scholar 

  36. LeMartelot, S., Saurel, R., Le Métayer, O.: Steady one-dimensional nozzle flow solutions of liquidgas mixtures. J. Fluid Mech. 737, 146–175 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. LeMetayer, O., Massoni, J., Saurel, R.: Elaborating equation of state for a liquid and its vapor for two-phase flow models. Int. J. Therm. Sci. 43, 265–276 (2004)

    Article  Google Scholar 

  38. Lohner, R.: Applied Computational Fluid Dynamics Techniques: An Introduction Based on Finite Element Methods. Wiley, Oxford (2008)

    Book  MATH  Google Scholar 

  39. Passman, S.L., Nunziato, J.W., Walsh, E.K.: A Theory of Multiphase Mixtures Appendix 5C of Rational Thermodynamics, 2nd ed. (pp. 286–325), Springer, New York (1984)

  40. Perthane, B., Shu, C.W.: On positivity preserving finite volume schemes for Euler equations. Numer. Math. 73(1), 119–130 (1996)

    Article  MathSciNet  Google Scholar 

  41. Qiang, L., Jian-Hu, F., Ti-min, C., Chun-bo, H.: Difference scheme for two-phase flow. Appl. Math. Mech. 25(5), 536–545 (2004)

    Article  MathSciNet  Google Scholar 

  42. Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Saurel, R., Le Métayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)

    Article  MATH  Google Scholar 

  44. Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228, 1678–1712 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Stadtke, H.: Gasdynamic Aspects of Two-Phase Flow. Wiley-VCH, Weinheim (2006)

    Book  Google Scholar 

  46. Tadmor, E.: A minimum entropy principle in the gas dynamics equations. Appl. Numer. Math. 2(35), 211–219 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  47. Turkel, E.: Preconditioned techniques in computational fluid dynamics. Annu. Rev. Fluid Mech. 31, 385–416 (1999)

    Article  MathSciNet  Google Scholar 

  48. Wong, J.S., Darmofal, D.L., Peraire, J.: The solution of the compressible Euler equations at low-Mach numbers using a stabilized finite element algorithm. Comput. Methods Appl. Mech. Eng. 190, 5719–5737 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Zein, A., Hantke, M., Warnecke, G.: Modeling phase transition for compressible two-phase flows applied to metastable liquids. J. Comput. Phys. 229(8), 2964–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zingan, V., Guermond, J.L., Morel, J., Popov, B.: Implementation of the entropy viscosity method with the discontinuous Galerkin method. J. Comput. Phys. 253, 479–490 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors (M.D. and J.R.) would like to thank Bojan Popov and Jean-Luc Guermond for many fruitful discussions. The authors would also like to thank the anonymous reviewers for their constructive comments that helped improve the readiness and the overall quality of this paper. This research was carried out under the auspices of the Idaho National Laboratory, a contractor of the U.S. Government under contract No. DEAC07-05ID14517. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean C. Ragusa.

Appendices

Appendix 1: Entropy Equation for the Multi-dimensional Seven Equation Model Without Viscous Regularization

This appendix provides the steps that lead to the derivation of the phasic entropy equation of the seven-equation two-phase flow Model [6]. For the purpose of this appendix, two phases are considered with no interphase mass or heat transfer and denoted by the indexes j and k. In the seven-equation two-phase flow Model, each phase obeys to the following set of equations (Eq. (55)):

$$\begin{aligned}&\partial _t \left( \alpha _k A\right) + A {u}_{int} \cdot {\nabla }\alpha _k = A \mu _P \left( P_k - P_j \right) \end{aligned}$$
(55a)
$$\begin{aligned}&\partial _t \left( \alpha _k \rho _k A \right) + {\nabla }\! \cdot \!\left( \alpha _k \rho _k {u}_k A \right) = 0\end{aligned}$$
(55b)
$$\begin{aligned}&\partial _t \left( \alpha _k \rho _k {u}_k A \right) + {\nabla }\! \cdot \!\left[ \alpha _k A \left( \rho _k {u}_k \otimes {u}_k + P_k {\mathbb {I}} \right) \right] \nonumber \\&\quad = \alpha _k P_k {\nabla }A + P_{int} A {\nabla }\alpha _k + A \lambda _u \left( {u}_j - {u}_k \right) \end{aligned}$$
(55c)
$$\begin{aligned}&\partial _t \left( \alpha _k \rho _k E_k A \right) + {\nabla }\! \cdot \!\left[ \alpha _k A {u}_k \left( \rho _k E_k + P_k \right) \right] \nonumber \\&\quad = P_{int} A {u}_{int} \cdot {\nabla }\alpha _k - A\mu _P {\bar{P}}_{int} \left( P_k-P_j \right) \nonumber \\&\qquad +\, \bar{{u}}_{int} A \lambda _u \left( {u}_j - {u}_k \right) \end{aligned}$$
(55d)

where \(\rho _k\), \({u}_k\), \(E_k\) and \(P_k\) denote the density, velocity, specific total energy, and pressure of phase k, respectively. \(\mu _P\) and \(\lambda _u\) and the pressure and velocity relaxation parameters, respectively. We recall that we assume that the cross section A is only function of space: \(\partial _t A = 0\) (a value of \(A \ne 1\) is mostly of practical important for 1D nozzle problems). Variables with subscript int correspond to the interfacial variables; their definitions are given in Eq. (56).

$$\begin{aligned} \left\{ \begin{array}{lll} P_{int} = {\bar{P}}_{int} - \frac{{\nabla }\alpha _k}{|| {\nabla }\alpha _k ||} \frac{Z_k Z_j}{Z_k + Z_j} \left( {u}_k-{u}_j \right) \\ {\bar{P}}_{int} = \frac{Z_k P_j + Z_j P_k}{Z_k + Z_j} \\ {u}_{int} = \bar{{u}}_{int} - \frac{{\nabla }\alpha _k}{|| {\nabla }\alpha _k ||} \frac{P_k - P_j}{Z_k + Z_j} \\ \bar{{u}}_{int} = \frac{Z_k {u} _k + Z_j {u}_j}{Z_k + Z_j} \end{array} \right. \end{aligned}$$
(56)

where \(Z_k = \rho _k c_k\) and \(Z_j = \rho _j c_j\) are the impedances of phases k and j, respectively. The speed of sound is denoted by the symbol c.

The first step in proving the entropy minimum principle for Eq. (55) consists of recasting these equations using the primitive variables \((\alpha _k, \rho _k, {u}_k, e_k)\), where \(e_k\) is the specific internal energy of phase k. We introduce the material derivative \(\frac{D (\cdot )}{Dt} = \partial _t (\cdot ) + {u}_k \cdot {\nabla }(\cdot )\) for simplicity.

The continuity equation can be expressed as follows:

$$\begin{aligned} \alpha _k A \frac{D \rho _k}{Dt} + \rho _k A \mu _P \left( P_k-P_j \right) + \rho _k A \left( {u}_k-{u}_{int} \right) \cdot {\nabla }\alpha _k + \rho _k \alpha _k {\nabla }\! \cdot \!\left( A {u}_k \right) = 0 . \end{aligned}$$
(57)

The momentum and continuity equations are combined to yield an equation for the velocity:

$$\begin{aligned} \alpha _k \rho _k A \frac{D{u}_k}{Dt} + {\nabla }\left( \alpha _k A P_k \right) = \alpha _k P_k {\nabla }A + P_{int} A {\nabla }\alpha _k + A \lambda _u \left( {u}_j-{u}_k \right) . \end{aligned}$$
(58)

A kinetic energy equation is obtained by taking the vector scalar product of the previous results with \({u}_k\) to yield:

$$\begin{aligned} \alpha _k \rho _k A \frac{D\left( {u}_k^2/2\right) }{Dt} + {u}_k {\nabla }\left( \alpha _k A P_k \right) = {u}_k \Big ( \alpha _k P_k {\nabla }A + P_{int} A {\nabla }\alpha _k + A \lambda _u \left( {u}_j-{u}_k \right) \Big ) . \end{aligned}$$
(59)

The internal energy equation is obtained by subtracting the above kinetic energy equation from the total energy equation:

$$\begin{aligned} \alpha _k \rho _k A \frac{D e_k}{Dt} + \alpha _k P_k {\nabla }\! \cdot \!\left( A {u}_k \right)= & {} P_{int} A \left( {u}_{int}-{u}_k \right) \cdot {\nabla }\alpha _k - {\bar{P}}_{int} A \mu _P \left( P_k-P_j \right) \nonumber \\&+\, A \lambda _u \left( {u}_j-{u}_k \right) \cdot \left( \bar{{u}}_{int}-{u}_k \right) . \end{aligned}$$
(60)

In the next step, we assume the existence of a phasic entropy \(s_k\) that is function of the density \(\rho _k\) and the internal energy \(e_k\). Using the chain rule,

$$\begin{aligned} \frac{Ds_k}{Dt} = (s_\rho )_k \frac{D \rho _k}{Dt} + (s_e)_k \frac{De_k}{Dt}, \end{aligned}$$
(61)

we combine the density and internal energy equations (\(\rho _k (s_\rho )_k \times Eq.~(57) + (s_e)_k \times Eq.~(60))\) to obtain the following entropy equation:

$$\begin{aligned}&\alpha _k \rho _k A \frac{Ds_k}{Dt} + \underbrace{\alpha _k \left( P_k (s_e)_k + \rho _k^2 (s_\rho )_k \right) {\nabla }\! \cdot \!\left( A {u}_k \right) }_\text {(a)}\nonumber \\&\quad = (s_e)_k A \left[ P_{int}({u}_{int}-{u}_k)\cdot {\nabla }\alpha _k - {\bar{P}}_{int} A \mu _P (P_k-P_j) + A \lambda _u (\bar{{u}}_{int}-{u}_k) \cdot ({u}_j-{u}_k)\right] \nonumber \\&\qquad -\, \rho _k^2 (s_\rho )_k \left[ \mu _P A (P_k-P_j) + A({u}_k-{u}_{int}) \cdot {\nabla }\alpha _k\right] \end{aligned}$$
(62)

where \((s_e)_k\) and \((s_\rho )_k\) denote the partial derivatives of entropy \(s_k\) with respect to the internal energy \(e_k\) and the density \(\rho _k\), respectively. The term denoted by (a) on the left-hand side of Eq. (62) can be set to zero by invoking the Gibbs relation from the second law of thermodynamics:

$$\begin{aligned} T_k ds_k = de_k - \frac{P_k}{\rho _k^2} d \rho _k \text { with } (s_e)_k = \frac{1}{T_k} \text { and } (s_\rho )_k = - \frac{P_k}{\rho _k^2} (s_e)_k \end{aligned}$$
(63)

which yields

$$\begin{aligned} P_k (s_e)_k + \rho _k^2 (s_\rho )_k = 0 . \end{aligned}$$
(64)

Finally, Eq. (62) is as follows:

$$\begin{aligned} ((s_e)_k)^{-1} \alpha _k \rho _k \frac{Ds_k}{Dt}= & {} \underbrace{\left[ P_{int} ({u}_{int}-{u}_k) + P_k ({u}_k-{u}_{int}) \right] \cdot {\nabla }\alpha _k}_\text {(b)} + \underbrace{\mu _P (P_k-P_j)(P_k-{\bar{P}}_{int})}_{(\mathrm{c})} \nonumber \\&+\, \underbrace{\lambda _u({u}_j-{u}_k)\cdot (\bar{{u}}_{int}-{u}_k)}_{(\mathrm{d})} \end{aligned}$$
(65)

The right-hand side of Eq. (65) has been split into three terms, (b), (c), and (d); next we analyze each of these terms separately. The terms (c) and (d) can be easily recast by using the definitions of \(\bar{{u}}_{int}\) and \({\bar{P}}_{int}\) given in Eq. (56):

$$\begin{aligned} \mu _P (P_k-P_j)(P_k-{\bar{P}}_{int}) = \mu _P \frac{Z_k}{Z_k+Z_j} (P_j - P_k)^2 ,\nonumber \\ \lambda _u({u}_j-{u}_k)\cdot (\bar{{u}}_{int}-{u}_k) = \lambda _u \frac{Z_j}{Z_k+Z_j} ({u}_j - {u}_k)^2 . \end{aligned}$$
(66)

By definition, \(\mu _P\), \(\lambda _u\), and \(Z_k\) are all positive. Thus, the above terms (c) and (d) are unconditionally positive.

We now inspect term (b). Once again, we use the definitions of \(P_{int}\) and \({u}_{int}\) and the following relations:

$$\begin{aligned} {u}_{int}-{u}_k= & {} \frac{Z_j}{Z_k+Z_j}({u}_j-{u}_k) - \frac{{\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert } \frac{Pk-P_j}{Z_k+Z_j} ,\nonumber \\ P_{int}-P_k= & {} \frac{Z_k}{Z_k+Z_j} (P_j-P_k) - \frac{{\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert } \frac{Z_k Z_j}{Z_k+Z_j} ({u}_k-{u}_j) . \nonumber \end{aligned}$$

Then, term (b) becomes:

$$\begin{aligned}&\left[ P_{int} ({u}_{int}-{u}_k) + P_k ({u}_k-{u}_{int}) \right] \cdot {\nabla }\alpha _k = (P_{int}-P_k)({u}_{int}-{u}_k)\cdot {\nabla }\alpha _k\nonumber \\&\quad = \frac{Z_k}{\left( Z_k+Z_j \right) ^2} {\nabla }\alpha _k \cdot \left[ Z_j ({u}_j-{u}_k)(P_j-P_k)+\frac{{\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert } Z_j^2 ({u}_j-{u}_k)^2 \right. \nonumber \\&\qquad +\left. \frac{{\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert }(P_k-P_j)^2 + \frac{{\nabla }\alpha _k \cdot {\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert ^2}(P_k-P_j)Z_j ({u}_k-{u}_j) \right] \end{aligned}$$
(67)

The above equation is factorized by \(\Vert {\nabla }\alpha _k \Vert \) and then recast under a quadratic form using \(\frac{{\nabla }\alpha _k \cdot {\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert ^2} = 1\). This yields:

$$\begin{aligned}&\left[ ({u}_{int}-{u}_k)P_{int} + ({u}_k-{u}_{int})P_k \right] {\nabla }\alpha _k \nonumber \\&\quad = \Vert {\nabla }\alpha _k \Vert \frac{Z_k }{\left( Z_k+Z_j \right) ^2} \left[ Z_j ({u}_j-{u}_k) + \frac{{\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert }(P_k-P_j)\right] ^2 \end{aligned}$$
(68)

Thus, using Eq. (65), Eq. (66), Eq. (67) and Eq. (68), the entropy equation obtained in [6] holds and is recalled here for convenience:

$$\begin{aligned} (s_{e})_k^{-1} \alpha _k \rho _k A \frac{Ds_k}{Dt}= & {} \mu _P \frac{Z_k}{Z_k+Z_j} (P_j - P_k)^2 + \lambda _u \frac{Z_j}{Z_k+Z_j} ({u}_j -{u}_k)^2 \nonumber \\&+\, \Vert {\nabla }\alpha _k \Vert \frac{Z_k}{\left( Z_k+Z_j \right) ^2} \left[ Z_j ({u}_j-{u}_k)+\frac{{\nabla }\alpha _k}{\Vert {\nabla }\alpha _k \Vert }(P_k-P_j)\right] ^2. \end{aligned}$$

Appendix 2: Compatibility of the Viscous Regularization for the Seven-Equation Two-Phase Model with the Generalized Harten Entropies

We investigate in this appendix whether the viscous regularization of the seven-equation two-phase model derived in Sect. 3 is compatible with some or all generalized entropies identified in Harten et al. [27]. Considering the single-phase Euler equations, Harten et al. [27] demonstrated that a function \(\rho {\mathscr {H}}(s)\) is called a generalized entropy and is strictly concave if \({\mathscr {H}}\) is twice differentiable and

$$\begin{aligned} {\mathscr {H}}' (s) \ge 0, \ \ \ \ {\mathscr {H}}'(s)c_p^{-1} - {\mathscr {H}}'' \ge 0, \ \forall \left( \rho , e \right) \in {\mathbb {R}}_+^2 , \end{aligned}$$
(69)

where \(c_p \left( \rho , e \right) = T \partial _T s \left( \rho , e \right) \) is the specific heat at constant pressure (T is a function of e and \(\rho \) through the equation of state). Because the seven-equation two-phase model was initially derived by assuming that each phase obeys the single-phase Euler equation, we want to investigate whether the above property still holds when considering the seven-equation model with viscous regularization included. To do so, we consider a phasic generalized entropy, \({\mathscr {H}}_k(s_k)\) and a phasic specific heat at constant pressure, \(c_{p,k} \left( \rho _k, e_k \right) = T_k \partial _{T_k} s_k \left( \rho _k, T_k \right) \) characterized by Eq. (69). The objective is to find an entropy inequality verified by \(\rho _k {\mathscr {H}}_k(s_k)\).

We start from the entropy inequality verified by \(s_k\),

$$\begin{aligned} \alpha _k \rho _k A \frac{Ds_k}{Dt} = {f}_k \cdot {\nabla }s_k + {\nabla }\! \cdot \!\left( \alpha _k A \rho _k \kappa _k {\nabla }s_k \right) - \alpha _k \rho _k A \kappa _k Q_k + (s_e)_k \alpha _k A \rho _k \mu _k {\nabla }^s {u}_k : {\nabla }{u}_k.\nonumber \\ \end{aligned}$$
(70)

Eq. (70) is multiplied by \({\mathscr {H}}_k'(s_k)\) to yield:

$$\begin{aligned} \alpha _k \rho _k A \frac{D{\mathscr {H}}_k(s_k)}{Dt}= & {} {\nabla }\! \cdot \!\left( \alpha _k A \rho _k \kappa _k {\nabla }{\mathscr {H}}_k (s_k) \right) - {\mathscr {H}}_k''(s_k) \alpha _k A \kappa _k \rho _k \Vert {\nabla }s_k \Vert ^2 \nonumber \\&+\, {\mathscr {H}}_k'(s_k) {f}_k \cdot {\nabla }s_k - {\mathscr {H}}_k'(s_k)\alpha _k \rho _k A \kappa _k Q_k \nonumber \\&+\, {\mathscr {H}}_k'(s_k)(s_e)_k \alpha _k A \rho _k \mu _k {\nabla }^s {u}_k : {\nabla }{u}_k \end{aligned}$$
(71)

Let us now multiply the continuity equation of phase k by \({\mathscr {H}}_k (s_k)\) and add the result to the above equation to obtain:

$$\begin{aligned}&\partial _t \left( \alpha _k \rho _k A {\mathscr {H}}_k(s_k)\right) + {\nabla }\! \cdot \!\left( \alpha _k \rho _k {u}_k A {\mathscr {H}}_k(s_k) \right) \nonumber \\&\qquad -\,{\nabla }\! \cdot \!\left[ \alpha _k A \rho _k \kappa _k {\nabla }{\mathscr {H}}_k (s_k) + \alpha _k A \kappa _k {\mathscr {H}}_k (s_k) {\nabla }\rho _k \right. \left. + A \kappa _k \rho _k {\mathscr {H}}_k (s_k) {\nabla }\alpha _k\right] \nonumber \\&\quad = \underbrace{-{\mathscr {H}}_k''(s_k) \alpha _k A \kappa _k \rho _k \Vert {\nabla }s_k \Vert ^2 - {\mathscr {H}}_k'(s_k) \alpha _k A \kappa _k \rho _k Q_k}_{{\mathbb {T}}_0}\nonumber \\&\qquad +\, \underbrace{ {\mathscr {H}}_k'(s_k)(s_e)_k \alpha _k A \rho _k \mu _k {\nabla }^s {u}_k : {\nabla }{u}_k}_{{\mathbb {T}}_1} . \end{aligned}$$
(72)

As in Sect. 3, the left-hand side of Eq. (72) is split into two residuals denoted by \({\mathbb {T}}_0\) and \({\mathbb {T}}_1\) in order to study the sign of each of them. Obviously the sign of \({\mathbb {T}}_1\) is positive since it is assumed that \( {\mathscr {H}}_k'(s_k) \ge 0\). To investigate the sign of \({\mathbb {T}}_0\), we use Eq. (69) to get:

$$\begin{aligned} - {\mathbb {T}}_0 \le {\mathscr {H}}_k'(s_k) \alpha _k A \kappa _k \rho _k \left( c_{p,k}^{-1} \Vert {\nabla }s_k\Vert ^2 + Q_k\right) . \end{aligned}$$
(73)

The right-hand side of Eq. (73) is a quadratic form that was already defined in Appendix 5 of [24] and can be recast in the matrix form \(X^t_k {\mathbb {S}} X_k\) where \({\mathbb {S}}\) is a \(2 \times 2\) matrix and the vector \(X_k\) was previously defined in Sect. 3. In [24], matrix \({\mathbb {S}}\) is shown to be negative semi-definite which allows us to conclude that \({\mathbb {T}}_0\) is unconditionally positive using Eq. (73). Then, knowing the sign of the two residuals \({\mathbb {T}}_0\) and \({\mathbb {T}}_1\), we conclude that:

$$\begin{aligned}&\partial _t \left( \alpha _k \rho _k A {\mathscr {H}}_k(s_k)\right) + {\nabla }\! \cdot \!\left( \alpha _k \rho _k {u}_k A {\mathscr {H}}_k(s_k) \right) \nonumber \\&\quad -\, {\nabla }\! \cdot \!\left[ \alpha _k A \rho _k \kappa _k {\nabla }{\mathscr {H}}_k (s_k) + \alpha _k A \kappa _k {\mathscr {H}}_k (s_k) {\nabla }\rho _k \right. \left. +\, A \kappa _k \rho _k {\mathscr {H}}_k (s_k) {\nabla }\alpha _k\right] \ge 0 . \end{aligned}$$

Subsequently, we conclude that an entropy inequality is satisfied for all generalized entropies \(\rho _k {\mathscr {H}}_k (s_k)\) when using the viscous regularization derived in Sect. 3 for the seven-equation two-phase model. Note that the above inequality holds as well for the total entropy of the system (i.e., summation over the phasic entropy statements).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delchini, M.O., Ragusa, J.C. & Berry, R.A. Viscous Regularization for the Non-equilibrium Seven-Equation Two-Phase Flow Model. J Sci Comput 69, 764–804 (2016). https://doi.org/10.1007/s10915-016-0217-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0217-6

Keywords

Navigation