Skip to main content
Log in

Convergence and Optimality of the Adaptive Nonconforming Linear Element Method for the Stokes Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we analyze the convergence and optimality of a standard adaptive nonconforming linear element method for the Stokes problem. After establishing a special quasi-orthogonality property for both the velocity and the pressure in this saddle point problem, we introduce a new prolongation operator to carry through the discrete reliability analysis for the error estimator. We then use a specially defined interpolation operator to prove that, up to oscillation, the error can be bounded by the approximation error within a properly defined nonlinear approximate class. Finally, by introducing a new parameter-dependent error estimator, we prove the convergence and optimality estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Babuskă, I., Vogelius, M.: Feedback and adaptive finite element solution of one-dimensional boundary value problems. Numer. Math. 44, 75–102 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bänsch, E., Morin, P., Nochetto, R.: An adaptive Uzawa FEM for the Stokes problem: convergence without the inf-sup condition. SIAM J. Numer. Anal. 40, 1207–1229 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becker, R., Mao, S.P.: An optimally convergent adaptive mixed finite element method. Numer. Math. 111, 35–54 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Becker, R., Mao, S.P.: Quasi-optimality of adaptive nonconforming finite element methods for the Stokes equations. SIAM J. Numer. Anal. 49, 970–991 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Becker, R., Mao, S.P., Shi, Z.C.: A convergent nonconforming adaptive finite element method with quasi-optimal complexity. SIAM J. Numer. Anal. 47, 4639–4659 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Binev, P., Dahmen, W., DeVore, R., Petrushev, P.: Approximation classes for adaptive methods. Serdica Math. J. 28, 391–416 (2002)

    MathSciNet  MATH  Google Scholar 

  8. Binev, P., Dahmen, W., DeVore, R.: Adaptive finite element methods with convergence rate. Numer. Math. 97, 219–268 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bonito, A., Nochetto, R.H.: Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. SIAM J. Numer. Anal. 48, 734–771 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brenner, S.: Poincaré-Friedrichs inequality for piecewise H 1 functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brenner, S., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (1994)

    Book  MATH  Google Scholar 

  12. Carstensen, C.: A unifying theory of a posteriori finite element error control. Numer. Math. 100, 617–637 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carstensen, C., Funken, S.A.: A posteriori error control in low-order finite element discretisations of incompressible stationary flow problems. Math. Comput. 70, 1353–1381 (2001)

    MathSciNet  MATH  Google Scholar 

  14. Carstensen, C., Hoppe, R.H.W.: Error reduction and convergence for an adaptive mixed finite element method. Math. Comput. 75, 1033–1042 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carstensen, C., Hoppe, R.H.W.: Convergence analysis of an adaptive nonconforming finite element method. Numer. Math. 103, 251–266 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Carstensen, C., Hu, J.: A unifying theory of a posteriori error control for nonconforming finite element methods. Numer. Math. 107, 473–502 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carstensen, C., Rabus, H.: An optimal adaptive mixed finite element method. Math. Comput. 80, 649–667 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Carstensen, C., Peterseim, D., Schedensack, M.: Comparison results of finite element methods for the Poisson model problem (2011). Available at http://www.math.hu-berlin.de/~Peterseim/files/Comparison.pdf

  19. Cascon, J.M., Kreuzer, C., Nochetto, R.H., Siebert, K.G.: Quasi-optimal convergence rate for an adaptive finite element method. SIAM J. Numer. Anal. 46, 2524–2550 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, L., Holst, M., Xu, J.: Convergence and optimality of adaptive mixed finite element methods. Math. Comput. 78, 35–53 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Chen, H.X., Xu, X.J., Hoppe, R.H.W.: Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems. Numer. Math. 116, 383–419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). Reprinted as SIAM Classics in Applied Mathematics, 2002

    MATH  Google Scholar 

  23. Crouzeix, M., Raviart, P.-A.: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO. Anal. Numér. 7, 33–76 (1973)

    MathSciNet  Google Scholar 

  24. Dahlke, S., Dahmen, W., Urban, K.: Adaptive wavelet methods for saddle point problems—Optimal convergence rates. SIAM J. Numer. Anal. 40, 1230–1262 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dari, E., Duran, R., Padra, C.: Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comput. 64, 1017–1033 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dörfler, W.: A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33, 1106–1124 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gudi, T.: A new error analysis for discontinuous finite element methods for linear problems. Math. Comput. 79, 2169–2189 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations, Theorem and Algorithms. Springer, Berlin (1986)

    Book  Google Scholar 

  29. Hu, J., Shi, Z.C., Xu, J.C.: Convergence and optimality of the adaptive Morley element method. Numer. Math. (2012). doi:10.1007/s00211-012-0445-0. See also, Hu, J. and Shi, Z.C. and Xu, J.C., Convergence and optimality of the adaptive Morley element method. Research Report 19 (2009). School of Mathematical Sciences and Institute of Mathematics, Peking University. Available online from May 2009. http://www.math.pku.edu.cn:8000/var/preprint/7280.pdf

    MathSciNet  Google Scholar 

  30. Hu, J., Xu, J.C.: Convergence of adaptive conforming and nonconforming finite element methods for the perturbed Stokes equation. Research report, School of Mathematical Sciences and Institute of Mathematics, Peking University (2007). Also available online from December 2007. http://www.math.pku.edu.cn:8000/var/preprint/7297.pdf

  31. Huang, J.G., Huang, X.H., Xu, Y.F.: Convergence of an adaptive mixed finite element method for Kirchhof plate bending problems. SIAM J. Numer. Anal. 49, 574–607 (2010)

    Article  MathSciNet  Google Scholar 

  32. Kondratyuk, Y.: Adaptive finite element algorithms for the Stokes problem: Convergence rates and optimal computational complexity. Preprint 1346, Department of Mathematics, Utrecht University (2006)

  33. Kondratyuk, Y., Stevenson, R.: An Optimal Adaptive Finite Element Method for the Stokes Problem. Preprint (2007)

  34. Mao, S.P., Zhao, X.Y., Shi, Z.C.: Convergence of a standard adaptive nonconforming finite element method with optimal complexity. Appl. Numer. Math. 60, 673–688 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Mekchay, K., Nochetto, R.H.: Convergence of adaptive finite element methods for general second order linear elliptic PDEs. SIAM J. Numer. Anal. 43, 1043–1068 (2005)

    Article  MathSciNet  Google Scholar 

  36. Morin, P., Nochetto, R., Siebert, K.: Data oscillation and convergence of adaptive FEM. SIAM J. Numer. Anal. 38, 466–488 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Morin, P., Nochetto, R.H., Siebert, K.G.: Convergence of adaptive finite element methods. SIAM Rev. 44, 631–658 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. Morin, P., Nochetto, R.H., Siebert, K.G.: Local problems on stars: A posteriori error estimators, convergence, and performance. Math. Comput. 72, 1067–1097 (2003)

    MathSciNet  MATH  Google Scholar 

  39. Rabus, H.: A natural adaptive nonconforming FEM is of quasi–optimal complexity. Comput. Methods Appl. Math. 10, 316–326 (2010)

    MathSciNet  Google Scholar 

  40. Stevenson, R.: Optimality of a standard adaptive finite element method. Found. Comput. Math. 7, 245–269 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Stevenson, R.: The completion of locally refined simplicial partitions created by bisection. Math. Comput. 77, 227–241 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  42. Verfürth, R.: A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Technique. Wiley-Teubner, New York (1996)

    Google Scholar 

Download references

Acknowledgements

The first author was supported by NSFC 10971005, and in part by NSFC 11031006. The second author was supported in part, by NSFC-10528102, NSF DMS 0915153, and DMS 0749202, and by the PSU-PKU Joint Center for Computational Mathematics and Applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hu.

Appendix: A Counter Example

Appendix: A Counter Example

We present an example in this appendix to show that if the prolongation operator \(I_{h}^{\prime}\) defined by (5.2) is directly used to analyze the discrete reliability of the estimator, the constant for the established discrete reliability could depend on some key mesh refinement ratio

$$\gamma:=\max _{K\in \mathcal {T}_H\backslash \mathcal {T}_h}\max _{\mathcal {T}_h\ni T\subset K} \frac{h_K}{h_T}, $$

where \(\mathcal {T}_{H}\) is some regular triangulation of Ω into triangles and \(\mathcal {T}_{h}\) is some refinement of \(\mathcal {T}_{H}\). To this end, we first give an example to demonstrate that there are generally no positive constants C independent of γ such that the following estimate holds true:

$$ \sum _{E\in \mathcal {E}_h\backslash \mathcal {E}_H}\int _E[u_H]\biggl\{\frac{\partial v_h}{\partial \nu_E}\biggr\}ds \leq C\biggl(\sum _{E\in \mathcal {E}_H\backslash \mathcal {E}_h}h_E^{-1} \bigl\|[u_H]\bigr\|_{L^2(E)}^2\biggr)^{1/2}\| \nabla _hv_h\|_{L^2(\varOmega )}, $$
(A.1)

where u H V H is the finite element solution of the velocity on the mesh \(\mathcal {T}_{H}\) and v h is some element of V h over the nested fine mesh \(\mathcal {T}_{h}\). As usual, \(\mathcal {E}_{H}\) (resp. \(\mathcal {E}_{h}\)) is the set of the edges of \(\mathcal {T}_{H}\) (resp. \(\mathcal {T}_{h}\)). Denote V H (resp. V h ) as the nonconforming linear element space with respect to \(\mathcal {T}_{H}\) (resp. \(\mathcal {T}_{h}\)). Denote [⋅] as the jump of some function across the edge E and {⋅} as the average of some function across the edge E. In addition, denote ν E as the unit normal vector to E with the length h E .

In the following, an example is given to show that u H V H and v h V h exist such that the above constant C depends on the ratio γ. For simplicity, let \(\mathcal {T}_{H}\) consist of two triangles △ABC and △ACD as in Fig. 1. Let \(\mathcal {T}_{h}\) be a uniform triangulation of Ω into 2×N 2 triangles, cf. Fig. 1 for the case N=5. We stress that the idea and result can be easily extended to the mesh with the newest vertex bisection. For the sake of simplicity, let N=2k+1 with some nonnegative integer k. Let Z i , i=−k,…,k, be the nodes of \(\mathcal {T}_{h}\) whose coordinates are \((\frac {1}{N},\frac {2i}{N})\). Let \(\phi_{Z_{i}}\) be the nodal basis function of the conforming linear element space defined over \(\mathcal {T}_{h}\) such that \(\phi_{Z_{i}}(Z_{i})=1\) and \(\phi_{Z_{i}}(Z)=0\) for any node Z other than Z i . We choose u H V H such that the jump is [u H ]=y over the edge AC. We choose v h as follows:

$$ v_h:=\sum _{i=-k}^{k}\operatorname {sign}(i) \phi_{Z_i}\quad \text{with } \operatorname {sign}(i):= \begin{cases} 1&\text{if }i>0, \\ 0 &\text{if }i=0, \\ -1&\text{if }i<0. \end{cases} $$
(A.2)

Note that \(\{\frac{\partial \phi_{Z_{i}}}{\partial \nu_{E}}\}=N/2\) over the edge AC for i=−k,…,k. A direct calculation gives

$$ \int_{AC}[u_H]\biggl\{\frac{\partial v_h}{\partial \nu_E}\biggr \}ds=N/2-\frac{1}{2N}. $$
(A.3)

On the other hand, a direct calculation leads to

$$ \|\nabla _hv_h\|^2_{L^2(\varOmega )}\leq4N. $$
(A.4)

This indicates that the constant C in (A.1) should be \(\mathcal{O}(\sqrt{N})\), which depends on the ratio \(\gamma =\mathcal {O}(N) \) for this example.

Fig. 1
figure 1

The meshes \(\mathcal {T}_{H}\) and \(\mathcal {T}_{h}\)

For the analysis of the discrete reliability, a direct application of the prolongation operator \(I_{h}^{\prime}\) as defined in (5.2) will lead to a similar estimate like (A.1), and, as a result, the constant for the established discrete reliability based on such an estimate will depend on the ratio γ. Note that in the analysis of optimality of the adaptive method it is possible to know that \(\mathcal {T}_{h}\) is some refinement of \(\mathcal {T}_{H}\) only by the newest vertex bisection [8, 19, 40]. Note, too, that there is no guarantee that γ is bounded. Therefore, the proof of the discrete reliability based on the prolongation operator \(I_{h}^{\prime}\) as presented in [5, 30] may not lead to a uniform estimate as claimed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Xu, J. Convergence and Optimality of the Adaptive Nonconforming Linear Element Method for the Stokes Problem. J Sci Comput 55, 125–148 (2013). https://doi.org/10.1007/s10915-012-9625-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-012-9625-4

Keywords

Navigation