Skip to main content
Log in

The WKB Local Discontinuous Galerkin Method for the Simulation of Schrödinger Equation in a Resonant Tunneling Diode

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we develop a multiscale local discontinuous Galerkin (LDG) method to simulate the one-dimensional stationary Schrödinger-Poisson problem. The stationary Schrödinger equation is discretized by the WKB local discontinuous Galerkin (WKB-LDG) method, and the Poisson potential equation is discretized by the minimal dissipation LDG (MD-LDG) method. The WKB-LDG method we propose provides a significant reduction of both the computational cost and memory in solving the Schrödinger equation. Compared with traditional continuous finite element Galerkin methodology, the WKB-LDG method has the advantages of the DG methods including their flexibility in h-p adaptivity and allowance of complete discontinuity at element interfaces. Although not addressed in this paper, a major advantage of the WKB-LDG method is its feasibility for two-dimensional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Abdallah, N., Degond, P., Markowich, P.A.: On a one-dimensional Schrödinger Poisson scattering model. Z. Angew. Math. Phys. 48, 135–155 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben Abdallah, N., Mouis, M., Negulescu, C.: An accelerated algorithm for 2D simulations of the quantum ballistic transport in nanoscale MOSFETs. J. Comput. Phys. 225, 74–99 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben Abdallah, N., Pinaud, O.: Multiscale simulation of transport in an open quantum system: Resonances and WKB interpolation. J. Comput. Phys. 213, 288–310 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben Abdallah, N., Pinaud, O., Gardner, C.L., Ringhofer, C.: A comparison of resonant tunneling based on Schrödinger’s equation and quantum hydrodynamics. VLSI Des. 15, 695–700 (2002)

    Article  Google Scholar 

  6. Bohm, D.: Quantum Theory. Dover, New York (1989)

    Google Scholar 

  7. Chen, Z., Cockburn, B., Gardner, C., Jerome, J.W.: Quantum hydrodynamic simulation of hysteresis in the resonant tunneling diode. J. Comput. Phys. 117, 274–280 (1995)

    Article  MATH  Google Scholar 

  8. Chen, Z., Cockburn, B., Jerome, J.W., Shu, C.-W.: Mixed-RKDG finite element methods for the 2d hydrodynamic model for semiconductor device simulation. VLSI Des. 3, 145–158 (1995)

    Article  Google Scholar 

  9. Cockburn, B., Dong, B.: An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems. J. Sci. Comput. 32, 233–262 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cockburn, B., Shu, C.-W.: Runge-Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gummel, H.K.: A self-consistent iterative scheme for one-dimensional steady state transistor calculations. IEEE Trans. Electron Dev. 11, 455–465 (1964)

    Article  Google Scholar 

  12. Liu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for moment models in device simulations: Formulation and one-dimensional results. J. Comput. Electron. 3, 263–267 (2004)

    Article  Google Scholar 

  13. Liu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for moment models in device simulations: Performance assessment and two-dimensional results. Appl. Numer. Math. 57, 629–645 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Negulescu, C.: Numerical analysis of a multiscale finite element scheme for the resolution of the stationary Schrödinger equation. Numer. Math. 108, 625–652 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Negulescu, C., Ben Abdallah, N., Polizzi, E., Mouis, M.: Simulation schemes in 2D nanoscale MOSFETs: A WKB based method. J. Comput. Electron. 3, 397–400 (2004)

    Article  Google Scholar 

  16. Pinaud, O.: Transient simulations of a resonant tunneling diode. J. Appl. Phys. 92, 1987–1994 (2002)

    Article  Google Scholar 

  17. Polizzi, E., Ben Abdallah, N.: Subband decomposition approach for the simulation of quantum electron transport in nanostructures. J. Comput. Phys. 202, 150–180 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method based on non-polynomial approximation spaces. J. Comput. Phys. 218, 295–323 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Yuan, L., Shu, C.-W.: Discontinuous Galerkin method for a class of elliptic multi-scale problems. Int. J. Numer. Methods Fluids 56, 1017–1032 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Additional information

Research supported by NSF grants DMS-0510345 and DMS-0809086.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, W., Shu, CW. The WKB Local Discontinuous Galerkin Method for the Simulation of Schrödinger Equation in a Resonant Tunneling Diode. J Sci Comput 40, 360–374 (2009). https://doi.org/10.1007/s10915-008-9237-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-008-9237-1

Keywords

Navigation