Skip to main content
Log in

On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

We discuss a new fifth-order, semi-discrete, central-upwind scheme for solving one-dimensional systems of conservation laws. This scheme combines a fifth-order WENO reconstruction, a semi-discrete central-upwind numerical flux, and a strong stability preserving Runge–Kutta method. We test our method with various examples, and give particular attention to the evolution of the total variation of the approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gottlieb S., Shu C.-W., and Tadmor E. (2001). Strong stability-preserving high order time discretization methods. SIAM Rev. 43:89–112

    Article  MathSciNet  Google Scholar 

  2. Harten A., Engquist B., Osher S., and Chakravarthy S. (1987). Uniformly high order accurate essentially non-oscillatory schemes III. J. Comp. Phys. 71:231–303

    Article  MathSciNet  Google Scholar 

  3. Jiang G.-S., and Shu C.-W. (1996). Efficient implementation of weighted ENO schemes. J. Comp. Phys. 126:202–228

    Article  MathSciNet  Google Scholar 

  4. Kurganov K., and Levy D. (2000). A Third-order semi-discrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comp. 22:1461–1488

    Article  MathSciNet  Google Scholar 

  5. Kurganov K., Noelle S., and Petrova G. (2001). Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comp. 23:707–740

    Article  MathSciNet  Google Scholar 

  6. Kurganov K., and Petrova G. (2001). A Third-order semi-discrete genuinely multidimensional central scheme for hyperbolic conservation laws and related problems. Numer. Math. 88:683–729

    Article  MathSciNet  Google Scholar 

  7. Kurganov A., and Tadmor E. (2000). New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comp. Phys. 160:241–282

    Article  ADS  CAS  MathSciNet  Google Scholar 

  8. Lax P.D. (1954). Weak solutions of nonlinear hyperbolic equations and their numerical computation. Comm. Pure Appl. Math. 7:159–193

    MATH  MathSciNet  Google Scholar 

  9. LeVeque R.J. (1992). Numerical Methods for Conservation Laws. Lectures in Mathematics, Birkhuser, Basel

    Google Scholar 

  10. Levy D., Puppo G., and Russo G. (1999). Central WENO schemes for hyperbolic of conservation laws. Math. Model. Numer. Anal. 33:547–571

    Article  MathSciNet  Google Scholar 

  11. Levy D., Puppo G., and Russo G. (2000). Compact central WENO schemes for multidimensional conservation laws. SIAM J. Sci. Comp. 22:656–672

    Article  MathSciNet  Google Scholar 

  12. Levy D., Puppo G., and Russo G. (2000). On the behavior of the total variation in CWENO methods for conservation laws. Appl. Num. Math. 33:415–421

    Article  MathSciNet  Google Scholar 

  13. Levy, D., Puppo, G., and Russo, G. (2002). A fourth order central WENO scheme for multi-dimensional hyperbolic systems of conservation laws. SIAM J. Sci. Comp. 24,

  14. Liu X.-D., Osher S., and Chan T. (1994). Weighted essentially non-oscillatory schemes. J. Comp. Phys. 115:200–212

    Article  ADS  MathSciNet  Google Scholar 

  15. Nessyahu H., and Tadmor E. (1990). Non-oscillatory central differencing for hyperbolic conservation laws. J. Comp. Phys. 87: 408–463

    Article  MathSciNet  Google Scholar 

  16. Qiu J., and Shu C.-W. (2002). On the construction, comparison, and local characteristic decomposition for high order central WENO schemes. J. Comp. Phys. 183:187–209

    Article  ADS  MathSciNet  Google Scholar 

  17. Shu C.-W., and Osher S. (1988). Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comp. Phys. 77:439–471

    Article  MathSciNet  Google Scholar 

  18. Sod G. (1978). A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. J. Comp. Phys. 27:1–31

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Spiteri R.J., and Ruuth S.J. (2002). A new class of optimal high-order strong-stability-preserving time discretization methods. SIAM J. Numer. Anal. 40:469–491

    Article  MathSciNet  Google Scholar 

  20. Woodward P., and Colella P. (1984). The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comp. Phys. 54:115–173

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Bryson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryson, S., Levy, D. On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws. J Sci Comput 27, 163–175 (2006). https://doi.org/10.1007/s10915-005-9046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-005-9046-8

Keywords

AMS(MOS) Subject Classification

Navigation