Skip to main content
Log in

The Evolutionary History and Genetic Diversity of Kinkajous, Potos flavus (Carnivora, Procyonidae)

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The genus Potos (Procyonidae) is currently recognized as a monotypic genus comprising the single species Potos flavus, the kinkajou. Kinkajous are widely distributed throughout forested habitats of tropical Central and South America, extending from eastern Brazil across central Bolivia, eastern Peru, northern Ecuador, Guianas, Suriname, Venezuela, Colombia, and then through Central America and into western Mexico. The taxonomic history of the species is complex, with seven or eight subspecies historically recognized to acknowledge the phenotypic variation among populations. In this study, the systematics and the evolutionary history of Potos flavus were investigated based on the mitochondrial gene cytochrome b, including specimens from a large range of localities, covering most of the distribution of the species, from central Middle America (Costa Rica and Panama) through South America (Ecuador, Peru, Bolivia, Brazil, Guyana, and French Guiana). Analyses of 30 Potos flavus sequences showed 27 haplotypes that were grouped in five main clades in all phylogenetic analyses. These clades suggested a high geographic structure with specimens from (1) Costa Rica, (2) Guianas and North Brazil, (3) North Peru, (4) Ecuador and Panama, (5a) interfluves Branco-Negro rivers in the Brazilian Amazon, (5b) Eastern Atlantic Forest, (5c) Amazonian lowlands east Negro river including Bolivia, Peru, and West Brazil. Each of these clades differs from 4.5 % to 9.3 % in their genetic distance estimates, which suggests that the specific status of some of these lineages should be reconsidered. Divergence dating and biogeographic analysis suggested that crown Potos diversified in the Miocene-Pliocene in South America, and geographic barriers, such as savannas and rivers, may have played a significant role in the kinkajou diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ab’Saber AN (1977) Os domínios morfoclimáticos na América do Sul. Geomorfologia 52:1–21

    Google Scholar 

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13:199–210

    Article  Google Scholar 

  • Anisimova M, Gascuel O (2006) Approximate likelihood-ratio test for branches: a fast, accurate, and powerful alternative. Syst Biol 55:539–552

    Article  PubMed  Google Scholar 

  • Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A (2015) Biological evidence supports an early and complex emergence of the isthmus of Panama. Proc Natl Acad Sci USA 112:6110–6115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Barbosa RI, Campos C, Pinto F, Fearnside PM (2007) The “lavrados” of Roraima: biodiversity and conservation of Brazil’s Amazonian savannas. Functional Ecosystems and Communities 1:19–41

    Google Scholar 

  • Berry PE, Holst BK, Yatskievych K (1995) Introduction. In: Steyermark JA, Berry PE, Holst BK (eds) Flora of the Venezuelan Guayana. Missouri Botanical Garden, St. Louis

    Google Scholar 

  • Bonvicino CR, Langguth A, Mittermeier RA (1989) A study of pelage color and geographic distribution in Alouatta belzebul (primates: Cebidae). Rev Nord Biol 6:139–148

    Google Scholar 

  • Boubli JP, Silva MNF, Amado MV, Hrbek T, Pontual FB, Farias IP (2008) A taxonomic reassessment of black uakari monkey, Cacajao melanocephalus, Humboldt (1811), with the description of two new species. Internatl J Primatol 29:723–741

    Article  Google Scholar 

  • Boubli JP, Ribas C, Lynch Alfaro JW, Alfaro ME, da Silva MN, Pinho GM, Farias IP (2015) Spatial and temporal patterns of diversification on the Amazon: a test of the riverine hypothesis for all diurnal primates of Rio Negro and Rio Branco in Brazil. Mol Phylogenet Evol 82 Pt B:400–412

    Article  PubMed  Google Scholar 

  • Cabrera A (1958) Catálogo de los mamíferos de América del Sur. I (Metatheria, Unguiculata, Carnívora). Rev Mus Argentino Cienc Nat 4:1–307

    Google Scholar 

  • Cartelle C, Hartwig WC (1996) A new extinct primate among the Pleistocene megafauna of Bahia, Brazil. Proc Natl Acad Sci USA 93:6405–6409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeography with small mammals. J Biogeogr 30:71–86

    Article  Google Scholar 

  • De Oliveira PE, Barreto AM, Suguio K (1999) Late Pleistocene/Holocene climatic and vegetacional history of the Brazilian caatinga: the fossil dunes of the middle São Francisco River. Palaeogeogr Palaeoclimatol Palaeoecol 152:319–337

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eizirik E, Murphy WJ, Koepfli KP, Johnson WE, Dragoo JW, Wayne RK, O’Brien SJ (2010) Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 56:49–63

    Article  CAS  PubMed  Google Scholar 

  • Farris DW, Jaramillo C, Bayona G, Restrepo-Moreno SA, Montes C, Cardona A, Mora A, Speakman RJ, Glascock MD, Valencia V (2011) Fracturing of the Panamanian isthmus during initial collision with South America. Geology 39:1007–1010

    Article  CAS  Google Scholar 

  • Ford LS, Hoffmann RS (1988) Potos flavus. Mammal Species 321:1–9

    Article  Google Scholar 

  • Fulton TL, Strobeck C (2006) Molecular phylogeny of the Arctoidea (Carnivora): effect of missing data on supertree and supermatrix analyses of multiple gene data sets. Mol Phylogenet Evol 41:165–181

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Hall ER (1981) The Mammals of North America. John Wiley and Sons, New York

  • Hartwig WC, Cartelle C (1996) A complete skeleton of the giant South American primate Protopithecus. Nature 381:307–310

  • Hasegawa M, Kishino H, Yano T (1985) Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J Mol Evol 22:160–174

    Article  CAS  PubMed  Google Scholar 

  • Heled J, Drummond AJ (2010) Bayesian inference of species trees from multilocus data. Mol Biol Evol 27:570–580

    Article  CAS  PubMed  Google Scholar 

  • Helgen KM, Pinto CM, Kays R, Helgen LE, Tsuchiya MT, Quinn A, Wilson DE, Maldonado JE (2013) Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the olinguito. Zookeys:1–83

  • Holowell T, Reynolds R (2005) Checklist of the terrestrial vertebrates of the Guiana Shield. Bull Zool Soc Wash 13:1–96

  • Kays R (2009) Family Procyonidae (raccoons). In: Wilson DE, Mittermeier RA (eds) Handbook of the Mammals of the World, Vol. 1, Carnivores. Lynx Editions, Barcelona, pp 504–530

  • Keane TM, Creevey CJ, Pentony MM, Naughton TJ, McLnerney JO (2006) Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol Biol 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Koepfli KP, Gompper ME, Eizirik E, Ho CC, Linden L, Maldonado JE, Wayne RK (2007) Phylogeny of the Procyonidae (Mammalia: Carnivora): molecules, morphology and the great American interchange. Mol Phylogenet Evol 43:1076–1095

    Article  CAS  PubMed  Google Scholar 

  • Kortlucke SM (1973) Morphological variation in the kinkajou, Potos flavus (Mammalia: Procyonidae) in middle America. Occ Pap Mus Nat Hist Univ Kansas 17:1–36

  • Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP (2013) Bayesian analysis of biogeography when the number of areas is large. Syst Biol 62:789–804

    Article  PubMed  PubMed Central  Google Scholar 

  • Ledje C, Arnason U (1996) Phylogenetic analyses of complete cytochrome b genes of the order Carnivora with particular emphasis on the Caniformia. J Mol Evol 42:135–144

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Matzke NJ (2013a) BioGeoBEARS: BioGeography with Bayesian (and likelihood) evolutionary analysis in R scripts. R package, version 0.2.1 http://CRAN.R-project.org/package=BioGeoBEARS Accessed 9 June 2016

  • Matzke NJ (2013b) cladoRcpp: C++ implementations of phylogenetic calculations. R package, version 0.14.2 http://CRAN.R-project.org/package=cladoRcpp Accessed 9 June 2016

  • Matzke NJ (2014) Model selection in historical biogeography reveals that founder-event speciation is a crucial process in island clades. Syst Biol 63:951–970

    Article  PubMed  Google Scholar 

  • Matzke NJ, Sidje RB (2013) rexpokit: R wrappers for EXPOKIT. R package, version 0.24.2 http://CRAN.R-project.org/package=rexpokit Accessed 9 June 2016

  • Nascimento FF, Bonvicino CR, da Silva FC, Schneider MP, Seuánez HN (2005) Cytochrome b polymorphisms and population structure of two species of Alouatta (primates). Cytogenet Genome Res 108:106–111

    Article  CAS  PubMed  Google Scholar 

  • Nascimento FF, Bonvicino CR, de Oliveira MM, Schneider MP, Seuánez HN (2008) Population genetic studies of Alouatta belzebul from the Amazonian and Atlantic forests. Am J Primatol 70:423–431

    Article  CAS  PubMed  Google Scholar 

  • Nowak RM, Paradiso JL (1983) Walker’s Mammals of the World. 4th edition. Johns Hopkins University Press, Baltimore.

  • Otto TD, Vasconcellos EA, Gomes LH, Moreira AS, Degrave WM, Mendonca-Lima L, Alves-Ferreira M (2008) ChromaPipe: a pipeline for analysis, quality control and management for a DNA sequencing facility. Genet Mol Res 7:861–871

    Article  CAS  PubMed  Google Scholar 

  • Paradis E, Claude J, Strimmer K (2004) APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20:289–290

    Article  CAS  PubMed  Google Scholar 

  • Patterson B, Pascual R (1972) The fossil mammal fauna of South America. In: Keast A, Erk FC, Glass B (eds) Evolution, Mammals, and Southern Continents. State University of New York Press, Albany, pp 247–309

  • R Core Team (2015) R: A language and environment for statistical computing http://www.R-project.org Accessed 9 Jun 2016

  • Rambaut A, Suchard MA, Xie D, Drummond AJ (2014) Tracer v1.6. http://beast.bio.ed.ac.uk/Tracer Accessed 20 May 2016

  • Ree RH, Smith SA (2008) Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis. Syst Biol 57:4–14

    Article  PubMed  Google Scholar 

  • Reguero MA, Candela AM (2001) Late Cenozoic mammals from the northwest of Argentina. In: Salfity JA, Marquillas RA (eds) Cenozoic Geology of the Central Andes of Argentina. SCS Publisher, Salta, pp 411–426

  • Ronquist F (1997) Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst Biol 46:195–203

    Article  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-García M, Lichilín-Ortiz N, Jaramillo MF (2013) Molecular phylogenetics of two Neotropical carnivores, Potos flavus (Procyonidae) and Eira barbara (Mustelidae): no clear existence of putative morphological subspecies. In: Ruiz-Garcia M, Shostell JM (eds) Molecular Population Genetics, Evolutionary Biology and Biological Conservation of Neotropical Carnivores. Nova Science Publishers, New York, pp 37–84

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

  • Slater GJ, Harmon LJ, Alfaro ME (2012) Integrating fossils with molecular phylogenies improves inference of trait evolution. Evolution 66:3931–3944

    Article  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Thomas O (1902) On the geographical races of the kinkajou. Ann Mag Nat Hist ser. 7, 9:266–270

    Article  Google Scholar 

  • Veron G, Patou ML, Pothet G, Simberloff D, Jennings AP (2007) Systematic status and biogeography of the Javan and small Indian mongooses (Herpestidae, Carnivora). Zool Scr 36:1–10

    Article  Google Scholar 

  • Vieira COC (1952) Sobre o “jupara” do nordeste do Brasil. Pap Avulsos Dep Zool 11:33–36

    Google Scholar 

  • Vivo M (1997) Mammalian evidence of historical ecological change in the caatinga semiarid vegetation of northeastern Brazil. J Comp Bio 2:65–73

    Google Scholar 

  • Vivo M, Carmignotto AP (2015) Family Sciuridae G. Fischer, 1817. In: Patton JL, Pardiñas UFJ, D’Elía G (eds) Mammals of South America, Volume 2: Rodents. University Of Chicago Press, Chicago, pp 40–182

  • Voss RS, Emmons LH (1996) Mammalian diversity in Neotropical lowland rainforests: a preliminary assessment. Bull Am Mus Nat Hist 230:1–115

    Google Scholar 

  • Wallace AR (1852) On the monkeys of the Amazon. Proc Zool Soc Lond 20:107–110

    Google Scholar 

  • Wozencraft WC (2005) Order Carnivora. In: Wilson DE, Reeder DM (eds) Mammal Species of the World: A Taxonomic and Geographic Reference. Johns Hopkins University Press, Baltimore, pp 532–628

  • Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Salemi M, Vandamme AM, Lemey P (eds) The Phylogenetic Handbook: A Practical Approach to Phylogenetic Analysis and Hypothesis Testing. Cambridge University Press, Cambridge, pp 615–630

  • Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (1996) Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol 11:367–372

    Article  CAS  PubMed  Google Scholar 

  • Yang Z (2007) PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol 24:1586–1591

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to all persons who kindly donated samples for the present work: R. Kays (North Carolina Museum of Natural Sciences, Nature Research Center, USA), J. Eger (Royal Ontario Museum, Canada), Jim Patton and Chris Conroy (Museum of Vertebrate Zoology, Berkeley), Joe Cook and Jon Dunnum (Museum of Southwestern Biology, University of New Mexico), and Yuri Leite (Universidade Federal do Espiríto Santo, Brazil). We also would like to thanks Y. Leite for his comments on early versions of this manuscript. We appreciated the facilities provided by FUNASA in Barcelos (Brazil, Amazonas) and staffs of Viruá national park (Brazil, Roraima). The collaboration in fieldwork by J.A. de Oliveira, L.F. de Oliveira, A. Junqueira was most useful. Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) granted license to collect the specimens. This work was supported by CNPq (Ministério da Ciência e Tecnologia, Brazil) productive fellowship to CRB; FAPERJ (Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Brazil, E-26/201.200/2014) to CRB; the National Evolutionary Synthesis Center (NESCent) – National Science Foundation (grant number EF-0905606) and the Royal Society and British Academy (Newton International Fellowship grant number NF140338) to FFN. GV thanks the ‘Service de Systématique Moléculaire’, Muséum National d’Histoire Naturelle, Paris (CNRS UMS 2700); and JSB acknowledges a Faculty Research Award from Texas Tech University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Bonvicino.

Electronic supplementary material

Table S1

(DOCX 112 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nascimento, F.F., Oliveira-Silva, M., Veron, G. et al. The Evolutionary History and Genetic Diversity of Kinkajous, Potos flavus (Carnivora, Procyonidae). J Mammal Evol 24, 439–451 (2017). https://doi.org/10.1007/s10914-016-9354-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9354-9

Keywords

Navigation