Skip to main content

Advertisement

Log in

Climatic Similarity of Extant and Extinct Dasypus Armadillos

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The similar geographic distributions of an extinct (Dasypus bellus) and an extant (D. novemcinctus) armadillo species have long been of interest to scholars because of the unresolved phylogeny. The relationship between the two species has been investigated through morphological and phylogenetic studies, whereas the ecological perspective has been overlooked, the importance of which is more and more acknowledged in speciation events. Here, we used ecological niche models to study the climatic niche similarity of three species of Dasypus (D. bellus, D. novemcinctus, and D. kappleri) and provide new insights on the relationship among them. The climatic niche similarity was compared in two ways: hindcast of ecological niche models based on occurrences and climatic layers, and direct niche boundary comparison along bioclimatic axes. The fossil records of D. bellus were not predicted suitable by the ecological niche models of the two extant armadillos. The direct comparison of niche boundary showed that D. bellus lived in colder and relative dryer climates, with high temperature variation and low precipitation variation. Our results did not support the previously assumed ecological similarity of D. bellus and D. novemcinctus based on their geographic distributions and emphasized the possibility of a cold adapted characteristic of the life history of D. bellus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abba AM, Superina M (2010a) The 2009/2010 armadillo red list assessment. Edentata 11: 135–184. doi:10.5537/020.011.0203

    Article  Google Scholar 

  • Abba AM, Superina M (2010b) Dasypus novemcinctus. IUCN red list of threatened species. Version 2012.2. http://www.iucnredlist.org. Accessed 27 April 2013

  • Anacleto TCS, Arteaga M, Superina M, Abba AM (2014) Dasypus kappleri. The IUCN red list of threatened species. Version 2014.3. http://www.iucnredlist.org. Accessed 27 March 2015

  • Anacleto TCS, Diniz-Filho JAF, Vital MVC (2006) Estimating potential geographic ranges of armadillos (Xenarthra, Dasypodidae) in Brazil under niche-based models/Estimation de la distribution géographique potentielle des tatous (Xenarthra, Dasypodidae) au Brésil à partir de modèles basés sur les niche écologiques. Mammalia 70: 202–213. doi:10.1515/MAMM.2006.039

    Article  Google Scholar 

  • Anderson RP, Raza A (2010) The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J Biogeogr 37: 1378–1393. doi:10.1111/j.1365-2699.2010.02290.x

    Article  Google Scholar 

  • Araújo MB, Pearson RG (2005) Equilibrium of species' distributions with climate. Ecography 28: 693–695. doi:10.1111/j.2005.0906-7590.04253.x

    Article  Google Scholar 

  • Barnosky AD, Koch PL, Feranec RS, Wing SL, Shabel AB (2004) Assessing the causes of late Pleistocene extinctions on the continents. Science 306: 70–75. doi:10.1126/science.1101476

    Article  CAS  PubMed  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275: 73–77. doi:10.1016/j.ecolmodel.2013.12.012

    Article  Google Scholar 

  • Colwell RK, Rangel TF (2009) Hutchinson's duality: the once and future niche. Proc Natl Acad Sci USA 106: 19651–19658. doi:10.1073/pnas.0901650106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis EB, McGuire JL, Orcutt JD (2014) Ecological niche models of mammalian glacial refugia show consistent bias. Ecography 37: 1133–1138. doi: 10.1111/ecog.01294

    Google Scholar 

  • Delsuc F, Scally M, Madsen O, Stanhope MJ, de Jong WW, Catzeflis FM, Springer MS, Douzery EJP (2002) Molecular phylogeny of living xenarthrans and the impact of character and taxon sampling on the placental tree rooting. Mol Biol Evol 19: 1656–1671. doi:10.1093/oxfordjournals.molbev.a003989

    Article  CAS  PubMed  Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, Marquéz JRG, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36: 27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1: 330–342. doi:10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Emmons L, Feer F (1997) Neotropical Rainforest Mammals: A Field Guide, 2nd edn. University of Chicago Press, Chicago

    Google Scholar 

  • Feng X, Papeş M (2015) Ecological niche modelling confirms potential north-east range expansion of the nine-banded armadillo (Dasypus novemcinctus) in the USA. J Biogeogr 42: 803–807. doi:10.1111/jbi.12427

    Article  Google Scholar 

  • Fonseca GAB, Aguiar JM (2004) The 2004 edentate species assessment workshop. Edentata 6: 1–26

    Article  Google Scholar 

  • Fourcade Y, Engler JO, Rödder D, Secondi J (2014) Mapping species distributions with MaxEnt using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9: e97122. doi:10.1371/journal.pone.0097122

    Article  PubMed  PubMed Central  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang Z-LL, Zhang M (2011) The community climate system model version 4. J Climate 24: 4973–4991. doi:10.1175/2011JCLI4083.1

    Article  Google Scholar 

  • Giorgetta MA, Roeckner E, Mauritsen T, Stevens B, T.Crueger, Esch M, Rast S, Kornblueh L, Schmidt H, Kinne S, Möbis B, Krismer T, Reick C, Raddatz T, Gayler V (2012) The atmospheric general circulation model ECHAM6 - model description. http://www.mpimet.mpg.de/en/science/models/echam.html. Accessed 1 October 2015

  • Graham RW, Lundelius EL Jr (2010) FAUNMAP II: new data for North America with a temporal extension for the Blancan, Irvingtonian and early Rancholabrean. FAUNMAP II Database, version 1.0. http://www.ucmp.berkeley.edu/faunmap/. Accessed 1 May 2015

  • Hijmans RJ (2014) Raster: geographic data analysis and modeling. http://cran.r-project.org/web/packages/raster/. Accessed 1 November 2014

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: 1965–1978. doi:10.1002/Joc.1276

    Article  Google Scholar 

  • Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) Dismo: species distribution modeling. R package version 0.8–5 http://CRAN.R-project.org/package=dismo. Accessed 1 November 2014

  • Hutchinson GE (1957) Concluding remarks. Cold Spring Harbor Symp Quant Biol 22: 415–427. doi:10.1101/SQB.1957.022.01.039

    Article  Google Scholar 

  • Jasinski SE, Wallace SC (2014) Investigation into the paleobiology of Dasypus bellus using geometric morphometrics and variation of the calcaneus. J Mammal Evol 21: 285–298. doi:10.1007/s10914-013-9239-0

    Article  Google Scholar 

  • Jimenez-Valverde A, Nakazawa Y, Lira-Noriega A, Peterson AT (2009) Environmental correlation structure and ecological niche model projections. Biodiversity Informatics 6: 28–35. doi:10.17161/bi.v6i1.1634

  • Klippel WE, Parmalee PW (1984) Armadillos in North American late Pleistocene contexts. In: Genoways HH, Dawson MB (eds) Contributions in Quaternary Vertebrate Paleontology. Carnegie Mus Nat Hist Spec Publ 8, pp 149–160

  • Kubiak H (1982) Morphological characters of the mammoth: an adaptation to the arctic–steppe environment. In: Hopkins DM, Matthews JV, Jr., Schweger CE, Young SB (eds) Paleoecology of Beringia. Academic Press, New York, pp 281–289

    Chapter  Google Scholar 

  • Leigh EG, O'Dea A, Vermeij GJ (2014) Historical biogeography of the Isthmus of Panama. Biol Rev 89: 148–172. doi:10.1111/brv.12048

    Article  PubMed  Google Scholar 

  • Lobo JM, Tognelli MF (2011) Exploring the effects of quantity and location of pseudo-absences and sampling biases on the performance of distribution models with limited point occurrence data. J Nat Conserv 19: 1–7. doi:10.1016/j.jnc.2010.03.002

    Article  Google Scholar 

  • McBee K, Baker RJ (1982) Dasypus novemcinctus. Mammal Species 162: 1–9

    Article  Google Scholar 

  • McNab BK (1980) Energetics and the limits to a temperate distribution in armadillos. J Mammal 61: 606–627. doi:10.2307/1380307

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36: 1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Moreno-Amat E, Mateo RG, Nieto-Lugilde D, Morueta-Holme N, Svenning J-C, García-Amorena I (2015) Impact of model complexity on cross-temporal transferability in MaxEnt species distribution models: an assessment using paleobotanical data. Ecol Model 312: 308–317. doi:10.1016/j.ecolmodel.2015.05.035

    Article  Google Scholar 

  • Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP (2014) ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods Ecol Evol 5: 1198–1205. doi:10.1111/2041-210X.12261

    Article  Google Scholar 

  • Nix HA (1986) A biogeographic analysis of Australian Elapid Snakes. In: Longmore R (ed) Atlas of Australian Elapid Snakes. Australian Government Publishing Service, Canberra, pp 4–15

  • Perez Zubieta J, Abba AM, Superina M (2014) Chaetophractus nationi. The IUCN red list of threatened species. Version 2015.2. http://www.iucnredlist.org. Accessed 23 July 2015

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological Niches and Geographic Distributions (MPB-49). Princeton University Press, Princeton

    Google Scholar 

  • Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436. doi:10.1038/20859

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with maxent: new extensions and a comprehensive evaluation. Ecography 31: 161–175. doi:10.1111/j.0906-7590.2008.5203.x

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning. Banff, Alberta, Canada, 655–662. doi:10.1145/1015330.1015412

    Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. Accessed 1 November 2014

  • Radosavljevic A, Anderson RP (2014) Making better MaxEnt models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41: 629–643. doi:10.1111/jbi.12227

    Article  Google Scholar 

  • Ray CE (1967) Pleistocene mammals from Ladds, Bartow County, Georgia. Ga J Sci 25: 120–150

    Google Scholar 

  • Ray N, Adams JM (2001) A GIS-based vegetation map of the world at the last glacial maximum (25,000-15,000 BP). Internet Archaeol 11: 1–44

    Google Scholar 

  • Rhodes RS II (1984) Paleoecology and regional paleoclimatic implications of the Farmdalian Craigmile and Woodfordian Waubonsie mammalian local faunas, southwestern Iowa. Illinois State Museum Reports of Investigation 40: 1–51

  • Richard-Hansen C, Vié JC, Vidal N, Kéravec J (1999) Body measurements on 40 species of mammals from French Guiana. J Zool 247: 419–428. doi:10.1111/j.1469-7998.1999.tb01005.x

    Article  Google Scholar 

  • Rincón AD, White RS, McDonald HG (2008) Late Pleistocene cingulates (Mammalia: Xenarthra) from Mene de Inciarte Tar Pits, Sierra de Perijá, western Venezuela. J Vertebr Paleontol 28: 197–207. doi:10.1671/0272-4634(2008)28

    Article  Google Scholar 

  • Robertson JS (1976) Latest Pliocene mammals from Haile XV a, Alachua County, Florida. Bull Florida State Mus Biol Sci 20: 111–186

    Google Scholar 

  • Rodda GH, Jarnevich CS, Reed RN (2011) Challenges in identifying sites climatically matched to the native ranges of animal invaders. PLoS ONE 6: e14670. doi:10.1371/journal.pone.0014670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawyer CF, Brinkman DC, Walker VD, Covington TD, Stienstraw EA (2012) The zoogeomorphic characteristics of burrows and burrowing by nine-banded armadillos (Dasypus novemcinctus). Geomorphology 157-158: 122–130. doi:10.1016/j.geomorph.2012.01.028

    Article  Google Scholar 

  • Schubert BW, Graham RW (2000) Terminal Pleistocene armadillo (Dasypus) remains from the Ozark Plateau, Missouri, USA. PaleoBios 20: 1–6

    Google Scholar 

  • Shapiro B, Graham RW, Letts B (2015) A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas 44: 14–23. doi:10.1111/bor.12094

    Article  Google Scholar 

  • Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model 269: 9–17. doi:10.1016/j.ecolmodel.2013.08.011

    Article  Google Scholar 

  • Slaughter BH (1961) The significance of Dasypus bellus (Simpson) in Pleistocene local faunas. Tex J Sci 13: 311–315

    Google Scholar 

  • Soberón JM, Nakamura M (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106: 19644–19650. doi:10.1073/pnas.0901637106

    Article  PubMed  PubMed Central  Google Scholar 

  • Sunday JM, Bates AE, Dulvy NK (2012) Thermal tolerance and the global redistribution of animals. Nat Clim Chang 2: 686–690. doi:10.1038/Nclimate1539

    Article  Google Scholar 

  • Superina M, Pagnutti N, Abba AM (2014) What do we know about armadillos? An analysis of four centuries of knowledge about a group of South American mammals, with emphasis on their conservation. Mammal Rev 44: 69–80. doi:10.1111/mam.12010

    Article  Google Scholar 

  • Swets JA (1979) ROC analysis applied to the evaluation of medical imaging techniques. Invest Radiol 14: 109–121. doi:10.1097/00004424-197903000-00002

    Article  CAS  PubMed  Google Scholar 

  • Taulman JF, Robbins LW (1996) Recent range expansion and distributional limits of the nine-banded armadillo (Dasypus novemcinctus) in the United States. J Biogeogr 23: 635–648. doi:10.1111/j.1365-2699.1996.tb00024.x

    Article  Google Scholar 

  • Taulman JF, Robbins LW (2014) Range expansion and distributional limits of the nine-banded armadillo in the United States: an update of Taulman & Robbins (1996). J Biogeogr 41: 1626–1630. doi:10.1111/jbi.12319

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. B Am Meteorol Soc 93: 485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Varela S, Lima-Ribeiro MS, Terribile LC (2015) A short guide to the climatic variables of the last glacial maximum for biogeographers. PLoS ONE 10: e0129037. doi:10.1371/journal.pone.0129037

    Article  PubMed  PubMed Central  Google Scholar 

  • Veloz SD (2009) Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models. J Biogeogr 36: 2290–2299. doi:10.1111/j.1365-2699.2009.02174.x

    Article  Google Scholar 

  • Vizcaíno SF, Loughry WJ (2008) The Biology of the Xenarthra. University Press of Florida, Gainesville

    Google Scholar 

  • Voorhies MR (1987) Fossil armadillos in Nebraska: the northernmost record. Southwest Nat 32: 237–243. doi:10.2307/3671566

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in MaxEnt: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21: 335–342. doi:10.1890/10-1171.1

    Article  PubMed  Google Scholar 

  • Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers Distrib 20: 334–343. doi:10.1111/ddi.12160

    Article  Google Scholar 

  • Watanabe S, Hajima T, Sudo K, Nagashima T, Takemura T, Okajima H, Nozawa T, Kawase H, Abe M, Yokohata T, Ise T, Sato H, Kato E, Takata K, Emori S, Kawamiya M (2011) MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci Model Dev 4: 845–872. doi:10.5194/gmd-4-845-2011

    Article  Google Scholar 

  • Wiens JJ (2008) Commentary on Losos (2008): niche conservatism déjà vu. Ecol Lett 11: 1004–1005. doi:10.1111/j.1461-0248.2008.01238.x

    Article  PubMed  Google Scholar 

  • Wiens JJ, Donoghue MJ (2004) Historical biogeography, ecology and species richness. Trends Ecol Evol 19: 639–644. doi:10.1016/j.tree.2004.09.011

    Article  PubMed  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14: 763–773. doi:10.1111/j.1472-4642.2008.00482.x

Download references

Acknowledgments

We thank Punidan D. Jeyasingh, Peter Pearman, and two anonymous reviewers for constructive comments on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, X., Anacleto, T.C.S. & Papeş, M. Climatic Similarity of Extant and Extinct Dasypus Armadillos. J Mammal Evol 24, 193–206 (2017). https://doi.org/10.1007/s10914-016-9336-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-016-9336-y

Keywords

Navigation