Skip to main content

Advertisement

Log in

Systematics and Phylogeny of Paleocene-Eocene Nyctitheriidae (Mammalia, Eulipotyphla?) with Description of a new Species from the Late Paleocene of the Clarks Fork Basin, Wyoming, USA

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Nyctitheriidae is a diverse group of small, insectivorous mammals from the Paleogene of Asia, North America, and Europe that have alternately been linked to Eulipotyphla (shrews, moles, hedgehogs, solenodons), Euarchonta (primates, tree shrews, dermopterans), or Chiroptera (bats). Even intrafamilial relationships are poorly understood, resulting in ambiguity regarding morphological character polarity critical for evaluating supraordinal relationships and paleobiogeographic patterns. To help address this issue, we performed a cladistic analysis of 51 North American, European, and Asian nyctitheriid species, including a new nyctitheriid, Plagioctenodon thewisseni sp. nov. from the late Paleocene of Wyoming, using 66 characters derived from dental morphology. Although the oldest nyctitheriids are found in North America, the resulting most-parsimonious cladograms support an Asian origin of the family with dispersal into North America by the early Paleocene. Among North American and European groups, the subfamilies Nyctitheriinae and Amphidozotheriinae, and the genera Leptacodon and Saturninia are not monophyletic and require future study and revision. The multi-species genera Nyctitherium, Plagioctenodon (including P. thewisseni), Plagioctenoides, Cryptotopos, and Euronyctia are found to be monophyletic, whereas Wyonycteris is paraphyletic, having Pontifactor bestiola nested within it. The earliest known European nyctitheriids (Leptacodon nascimentoi, Placentidens lotus, Plagioctenodon dormaalensis, Wyonycteris richardi) appear in the early Eocene and are each found in an otherwise strictly North American clade consisting of either solely Paleocene or a combination of Paleocene and Eocene taxa, suggesting at least four earliest Eocene dispersals between North America and Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The codings for the M1 and M2 of Leptacodon nascimentoi were based on Fig. 10 (SV3-300) and Fig. 9 (SV2-12), respectively, which is opposite to how they are identified in Estravis (1996). See the reasoning in the Body Mass Calculations subsection of the Materials and Methods section.

  2. Leptacodon proserpinae was taken out of the final analysis. It is only mentioned in one publication with a single tooth, the P4, illustrated. Only a small fraction of the characters in this analysis could be coded (8 of 66), which caused a great deal of instability in the placement of the taxon and resulted in a large polytomy in the strict consensus tree.

  3. The holotype specimen number in Setoguchi (1973) is given as TTM 1219 but based on the figures, the specimen (broken P4, M1-M3) is the same as the holotype for Nyctitherium christopheri in Krishtalka and Setoguchi (1977), although that specimen number is reported as CM 16996.

  4. Posterior premolars are referred to as penultimate and ultimate to avoid confusion because Maelestes gobiensis has five premolars and nyctitheriids have four. It is understood that the third premolar is eventually lost in eutherians when the count goes down to four, so that the P4 and P5 of Maelestes are homologous to the P3 and P4 of nyctitheriids.

  5. For characters that just specify “lower molar” or “upper molar,” all taxa were coded using the second molar, if possible. If that position was unknown, the first molar was used.

  6. sensu Menu and Sigé 1971: The entoconid and hypoconulid are closely appressed but separated by a fissure and the hypoconid and hypoconulid are connected by a crest.

References

  • Archibald JD, Averianov AO, Ekdale EG (2001) Late Cretaceous relatives of rabbits, rodents, and other extant eutherian mammals. Nature 414:62–5

    Article  CAS  PubMed  Google Scholar 

  • Averianov AO, Archibald JD (2013) New material and reinterpretation of the Late Cretaceous eutherian mammal Paranyctoides from Uzbekistan. Acta Palaeontol Pol 58:17–23

    Google Scholar 

  • De Bast E, Sigé B, Smith T (2012) Diversity of the adapisoriculid mammals from the early Palaeocene of Hainin, Belgium. Acta Palaeontol Pol 57:35–52

    Article  Google Scholar 

  • Beard K, Dawson M (1999) Intercontinental dispersal of Holarctic land mammals near the Paleocene/Eocene boundary: paleogeographic, paleoclimatic and biostratigraphic implications. Bull Soc Géol Fr 170:697–706

    Google Scholar 

  • Beard K, Dawson M (2009) Early Wasatchian mammals of the Red Hot Local Fauna, uppermost Tuscahoma Formation, Lauderdale County, Mississippi. Ann Carnegie Mus 78:193–243

    Article  Google Scholar 

  • Bloch J (2001) Mammalian paleontology of freshwater limestones from the Paleocene-Eocene of the Clarks Fork Basin, Wyoming. Dissertation, University of Michigan, Ann Arbor

    Google Scholar 

  • Bloch J, Bowen G (2001) Paleocene-Eocene microvertebrates in freshwater limestones of the Willwood Formation, Clarks Fork Basin, Wyoming. In: Gunnell GF (ed) Eocene Biodiversity. Kluwer Academic/Plenum, New York, pp 95–129

    Chapter  Google Scholar 

  • Bloch J, Boyer D (2001) Taphonomy of small mammals in freshwater limestones from the Paleocene of the Clarks Fork Basin. Paleocene–Eocene stratigraphy and biotic change in the Bighorn and Clarks Fork basins, Wyoming. Univ Michigan Pap Paleontol 33:185–198

    Google Scholar 

  • Bloch JI, Rose KD, Gingerich PD (1998) New species of Batodonoides (Lipotyphla, Geolabididae) from the early Eocene of Wyoming: smallest known mammal? J Mammal 79:804–827

    Article  Google Scholar 

  • Bloch JI, Silcox MT, Boyer DM, Sargis EJ (2007) New Paleocene skeletons and the relationship of plesiadapiforms to crown-clade Primates. Proc Natl Acad Sci USA 104:1159–1164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowen GJ, Bloch JI (2002) Petrography and geochemistry of floodplain limestones from the Clarks Fork Basin, Wyoming, U.S.A.: carbonate deposition and fossil accumulation on a Paleocene-Eocene floodplain. J Sediment Res 72:46–58

    Article  Google Scholar 

  • Bowen GJ, Clyde WC, Koch PL, Ting S, Alroy J, Tsubamoto T, Wang Y, Wang Y (2002) Mammalian dispersal at the Paleocene/Eocene boundary. Science 295:2062–2065

    Article  CAS  PubMed  Google Scholar 

  • Bown TM (1979) Geology and mammalian paleontology of the Sand Creek facies, lower Willwood Formation (lower Eocene), Washakie County, Wyoming. Wyoming Geol Surv Mem 2:1–151

    Google Scholar 

  • Bown TM, Schankler D (1982) A review of the Proteutheria and Insectivora of the Willwood Formation (lower Eocene), Bighorn Basin, Wyoming. US Geol Surv Bull 1532:1–79

    Google Scholar 

  • Butler PM (1988) Phylogeny of the insectivores. In: Benton MJ (ed) The Phylogeny of the Tetrapods, Vol. 2: Mammals. Clarendon Press, Oxford, pp 117–141

  • Chester SGB, Bloch JI, Secord R, Boyer DM (2010) A new small-bodied species of Palaeonictis (Creodonta, Oxyaenidae) from the Paleocene-Eocene Thermal Maximum. J Mammal Evol 17:227–243

    Article  Google Scholar 

  • Christiansen MG, Stucky RK (2013) Revision of the Wind River Faunas, early Eocene of central Wyoming. Part 15. New Nyctitheriidae (?Lipotyphla) with analysis of the relationships of North American taxa. Denver Mus Nat Sci Ann 1–16

  • Cray PE (1973) Marsupialia, Insectivora, Primates, Creodonta, and Carnivora from the Headon Beds (Upper Eocene) of southern England. Bull Brit Mus (Nat Hist) Geol 23:1–102

    Google Scholar 

  • Crochet J (1974) Les insectivores des phosphorites du Quercy. Palaeovertebrata 6:109–159

    Google Scholar 

  • Dawson M, Krishtalka L (1984) Fossil history of the families of Recent mammals. In: Anderson S, Jones JK Jr (eds) Orders and Families of Recent Mammals of the World. John Wiley & Sons, New York, pp 11–57

    Google Scholar 

  • Estravis C (1996) Leptacodon nascimentoi n. sp., un nouveau Nyctitheriidae (Mammalia, Lipotyphla) de l’Eocène inférieur de Silveirinha (Baixo Mondego, Portugal). Palaeovertebrata 25:279–286

    Google Scholar 

  • Gheerbrant E, Hartenberger JL (1999) Nouveau mammifère insectivore (? Lipotyphla,? Erinaceomorpha) de l’Eocène inférieur de Chambi (Tunisie). Paläontol Z 73:143–156

    Article  Google Scholar 

  • Gheerbrant E, Russell DE (1989) Presence of the genus Afrodon [Mammalia, Lipotyphla (?), Adapisoriculidae] in Europe; new data for the problem of trans-Tethyan relations between Africa and Europe around the K/T boundary. Palaeogeogr Palaeoclimatol Palaeoecol 76:1–15

    Article  Google Scholar 

  • Gibert Clols J, Agustí Ballester J (1979) Insectívoros (Nyctitheriidae, Soricidae, Apatemyidae) del Paleógeno catalán. Acta Geol Hisp 14:347–350

    Google Scholar 

  • Gingerich PD (1982) Studies on Paleocene and early Eocene Apatemyidae (Mammalia, Insectivora). II. Labidolemur and Apatemys from the early Wasatchian of the Clarks Fork Basin, Wyoming. Contrib Mus Paleontol Univ Mich, 27: 275–320

    Google Scholar 

  • Gingerich PD (1983) New Adapisoricidae, Pentacodontidae, and Hyopsodontidae (Mammalia, Insectivora, and Condylarthra) from the late Paleocene of Wyoming and Colorado. Contrib Mus Paleontol Univ Mich 26:227–255

    Google Scholar 

  • Gingerich PD (1987) Early Eocene bats (Mammalia, Chiroptera) and other vertebrates in freshwater limestones of the Willwood Formation, Clark’s Fork Basin, Wyoming. Contrib Mus Paleontol Univ Mich 27:275–320

    Google Scholar 

  • Gingerich PD (2006) Environment and evolution through the Paleocene-Eocene Thermal Maximum. Trends Ecol Evol 21:246–253

    Article  PubMed  Google Scholar 

  • Gingerich PD, Deutsch HA (1989) Systematics and evolution of early Eocene Hyaenodontidae (Mammalia, Creodonta) in the Clarks Fork Basin, Wyoming. Contrib from Museum Paleontol Univ Michigan 135:327–391

    Google Scholar 

  • Gingerich PD, Gunnell GF (1992) A new skeleton of Plesiadapis cookei. Display Case, A Quarterly Newsletter of the Exhibit Museum, University of Michigan 6:1–3

    Google Scholar 

  • Gingerich PD, Gunnell GF (2005) Brain of Plesiadapis cookei (Mammalia, Proprimates): surface morphology and encephalization compared to those of Primates and Dermoptera. Contrib Mus Paleontol Univ Mich 31:185–195

    Google Scholar 

  • Gingerich PD, Houde P, Krause DW (1983) A new earliest Tiffanian (late Paleocene) mammalian fauna from Bangtail Plateau, western Crazy Mountain Basin, Montana. J Paleontol 57:957–970

    Google Scholar 

  • Godinot M (1981) Les mammifères de Rians (Eocène inférieur, Provence). Palaeovertebrata 10:43–126

    Google Scholar 

  • Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786

    Article  Google Scholar 

  • Gunnell GF, Bown TM, Hutchison JH, Bloch JI (2008) Lipotyphla. In: Janis CM, Gunnell GF, Uhen MD (eds) Evolution of Tertiary Mammals of North America, Vol. 2: Small Mammals, Xenarthrans, and Marine Mammals. Cambridge University Press, New York, pp 89–125

    Chapter  Google Scholar 

  • Gunnell GF, Gingerich PD (1987) Skull and partial skeleton of Plesiadapis cookei from the Clarks Fork Basin. Am J Phys Anthropol 72:206

    Google Scholar 

  • Hand S, Novacek MJ, Godthelp H, Archer M (1994) First Eocene bat from Australia. J Vertebr Paleontol 14:375–381

    Article  Google Scholar 

  • Hooker JJ (2001) Tarsals of the extinct insectivoran family Nyctitheriidae (Mammalia): evidence for archontan relationships. Zool J Linn Soc 132:501–529

    Article  Google Scholar 

  • Hooker JJ, Russell DE (2012) Early Palaeogene Louisinidae (Macroscelidea, Mammalia), their relationships and north European diversity. Zool J Linn Soc 164:856–936

    Article  Google Scholar 

  • Hooker JJ, Weidmann M (2000) The Eocene mammal faunas of Mormont, Switzerland: systematic revision and resolution of dating problems. Abh Schweiz Paläontol Ges 120:1–143

    Google Scholar 

  • Houde P (1986) Ostrich ancestors found in the Northern Hemisphere suggest new hypothesis of ratite origins. Nature 324:563–565

    Article  Google Scholar 

  • Houde P (1987) Critical evaluation of DNA hybridization studies in avian systematics. Auk 104:17–32

    Article  Google Scholar 

  • Jepsen GL (1930) Stratigraphy and paleontology of the Paleocene of northeastern Park County, Wyoming. Proc Am Philos Soc 69:463–528

    Google Scholar 

  • Krause DW, Gingerich PD (1983) Mammalian fauna from Douglass Quarry, earliest Tiffanian (late Paleocene) of the eastern Crazy Mountain Basin, Montana. Contrib Mus Paleontol Univ Mich 26:157–196

    Google Scholar 

  • Krause DW, Maas M (1990) The biogeographic origins of late Paleocene-early Eocene mammalian immigrants to the Western Interior of North America. Geol Soc Am Spec Pap 243:71–105

    Article  Google Scholar 

  • Krishtalka L (1976) North American Nyctitheriidae (Mammmalia, Insectivora). Ann Carnegie Museum 46:7–28

    Google Scholar 

  • Krishtalka L, Setoguchi T (1977) Paleontology and geology of the Badwater Creek area, central Wyoming. Part 13. The late Eocene Insectivora and Dermoptera. Ann Carnegie Museum 46:71–99

    Google Scholar 

  • Lopatin AV (2005) A new soricomorph insectivore (Soricomorpha, Mammalia) from the Eocene of Mongolia and the origin of shrews (Soricidae). Dokl Biol Sci 401:842–844

    Article  Google Scholar 

  • Lopatin AV (2006) Early Paleogene insectivore mammals of Asia and establishment of the major groups of Insectivora. Paleontol J 40:S205–S405

    Article  Google Scholar 

  • Marandat B (1991) Mammifères de l’Ilerdien moyen (Eocène inférieur) des Corbières et du Minervois (Bas-Languedoc, France): Systématique, biostratigraphie, corrélations. Palaeovertebrata 20:55–144

    Google Scholar 

  • Marsh OC (1872) Preliminary description of new Tertiary mammals. Part I. Am J Sci 4:122–128

    Article  Google Scholar 

  • Matthew WD, Granger W (1921) New genera of Paleocene mammals. Am Mus Novitates 13:1–7

    Google Scholar 

  • McKenna MC (1968) Leptacodon, an American Paleocene nyctithere (Mammalia, Insectivora). Am Mus Novitates 2317:1–12

    Google Scholar 

  • McKenna MC, Bell SK (1997) Classification of Mammals above the Species Level. Columbia University Press, New York

    Google Scholar 

  • Menu H, Sigé B (1971) Nyctalodontie et myotodontie; important caractères de grades évolutifs chez les Chiroptères entomophages. Comptes Rendus Acad Sci Paris D 272:1735–1738

    Google Scholar 

  • Missiaen P (2011) An updated mammalian biochronology and biogeography from the early Paleogene of Asia. Vertebr Palasiat 49:29–52

    Google Scholar 

  • Missiaen P, Smith T (2005) A new Paleocene nyctitheriid insectivore from Inner Mongolia (China) and the origin of Asian nyctitheriids. Acta Palaeontol Pol 50:513–522

    Google Scholar 

  • Novacek MJ, Bown TM, Schankler D (1985) On the classification of the early Tertiary Erinaceomorpha (Insectivora, Mammalia). Am Mus Novitates 2813:1–22

    Google Scholar 

  • Penkrot TA, Zack SP, Rose KD, Bloch JI (2008) Postcranial morphology of Apheliscus and Haplomylus (Condylarthra, Apheliscidae): evidence for a Paleocene Holarctic origin of Macroscelidea. In: Sargis EJ, Dagosto M (eds) Mammalian Evolutionary Morphology: A Tribute to Frederick S. Szalay. Springer Netherlands, Dordrecht, pp 73–106

    Chapter  Google Scholar 

  • Revilliod P (1922) Contribution à l’étude des chiroptères des terrains tertiaires. Troisième partie et fin. Abh Schweiz Paläontol Ges 45:133–195

    Google Scholar 

  • Robinson P (1968) Nyctitheriidae (Mammalia, Insectivora) from the Bridger Formation of Wyoming, USA. Contrib Geol Univ Wyoming 7:129–138

    Google Scholar 

  • Rose KD (1981) The Clarkforkian Land-Mammal Age and mammalian faunal composition across the Paleocene-Eocene boundary. Univ Mich Pap Paleontol 26:1–197

    Google Scholar 

  • Rose KD, Chester SGB, Dunn RH, Boyer DM, Bloch JI (2011) New fossils of the oldest North American euprimate Teilhardina brandti (Omomyidae) from the Paleocene-Eocene Thermal Maximum. Am J Phys Anthropol 146:281–305

    Article  PubMed  Google Scholar 

  • Rose KD, Chew AE, Dunn RH, Kraus MJ, Fricke HC, Zack SP (2012) Earliest Eocene mammalian fauna from the Paleocene-Eocene Thermal Maximum at Sand Creek Divide, southern Bighorn Basin, Wyoming. Univ Mich Pap Paleontol 36:1–122

    Google Scholar 

  • Rose KD, Gingerich PD (1987) A new insectivore from the Clarkforkian (earliest Eocene) of Wyoming. J Mammal 68:17–27

    Article  Google Scholar 

  • Rose KD, Storch G, Krohmann K (2013) Small-mammal postcrania from the middle Paleocene of Walbeck, Germany. Paläontol Z 1–30

  • Russell DE, Dashzeveg D (1986) Early Eocene insectivores (Mammalia) from the People’s Republic of Mongolia. Palaeontology 29:269–291

    Google Scholar 

  • Russell D, Louis P, Savage D (1973) Chiroptera and Dermoptera of the French early Eocene. Univ Calif Publ Geol Sci 95:1–57

    Google Scholar 

  • Scott CS (2003) Late Torrejonian (middle Paleocene) mammals from south central Alberta, Canada. J Paleontol 77:745–768

    Article  Google Scholar 

  • Secord R (2008) The Tiffanian Land-Mammal Age (middle and late Paleocene) in the northern Bighorn Basiin, Wyoming. Univ Mich Pap Paleontol 35:1–192

    Google Scholar 

  • Setoguchi T (1973) The late Eocene marsupials and insectivores from the Tepee Trail Formation, Badwater, Wyoming. Dissertation, Texas Tech University, Lubbock

    Google Scholar 

  • Sigé B (1976) Insectivores primitifs de l’Eocene superieur et Oligocene inferieur d'Europe occidentale. Mem Mus Natl Hist Nat 34:1–140

    Google Scholar 

  • Sigé B (1997) Les mammifères insectivores des nouvelles collection de Sossís et sites associés (Éocène Supérieur, Espagne). Géobios 30:91–113

    Article  Google Scholar 

  • Sigé B, Storch G (2001) Un nouveau Saturninia (Nyctitheriidae, Lipotyphla, Mammalia) de l’assise OK (Oberkohle, MP 14) du bassin lignitifère du Geiseltal (Eocène moyen supérieur d'Allemagne). Senckenberg Lethaea 81:343–346

    Article  Google Scholar 

  • Silcox MT, Bloch JI, Sargis EJ, Boyer DM (2005) Euarchonta (Dermoptera, Scandentia, Primates). In: Rose KD, Archibald JD (eds) The Rise of Placental Mammals: Origins and Relationships of the Major Extant Clades. The Johns Hopkins University Press, Baltimore, pp 127–144

    Google Scholar 

  • Simpson GG (1928) A new mammalian fauna from the Fort Union of southern Montana. Am Mus Novitates 297:1–15

    Google Scholar 

  • Simpson GG (1935) The Tiffany Fauna, upper Paleocene: I. Multituberculata, Marsupialia, Insectivora, and ?Chiroptera. Am Mus Novitates 795:1–20

    Google Scholar 

  • Smith R (2004) Insectivores (Mammalia) from the earliest Oligocene (MP 21) of Belgium. Netherlands J Geosci 83:187–192

    Google Scholar 

  • Smith T (1995) Présence du genre Wyonycteris (Mammalia, Lipotyphla) à la limite Paléocène-Eocène en Europe. Comptes Rendus Acad Sci 321:923–930

    Google Scholar 

  • Smith T (1996) Leptacodon dormaalensis (Mammalia, Lipotyphla), un nyctithere primitif de la transition Paleocene-Eocene en Europe. Belgian J Zool 126:153–167

    Google Scholar 

  • Smith T, Bloch JI, Strait SG, Gingerich PD (2002) New species of Macrocranion (Mammalia, Lipotyphla) from the earliest Eocene of North America and its biogeographic implications. Contrib Mus Paleontol Univ Mich 30:373–384

    Google Scholar 

  • Smith T, Rose KD, Gingerich PD (2006) Rapid Asia-Europe-North America geographic dispersal of earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proc Natl Acad Sci USA 103:11223–11227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith T, Smith R (1996) Synthèse des données actuelles sur les vertébrés de la transition Paléocène-Eocène de Dormaal (Belgique). Bull Soc belge Géol, 104(1–2): 119–131

    Google Scholar 

  • Storch G, Haubold H (1989) Additions to the Geiseltal mammalian faunas, middle Eocene: Didelphidae, Nyctitheriidae, Myrmecophagidae. Palaeovertebrata 19:95–114

    Google Scholar 

  • Szalay F, Drawhorn G (1980) Evolution and diversification of the Archonta in an arboreal milieu. In: Luckett WP (ed) Comparative Biology and Evolutionary Relationships of Tree Shrews. Plenum Press, New York, pp 133–169

    Chapter  Google Scholar 

  • Tong Y (1997) Middle Eocene small mammals from Liquanqiao Basin of Henan Province and Yuanqu Basin of Shanxi Province, Central China. Palaeontol Sin Ser C 26:1–256

    Google Scholar 

  • Van Valen L (1978) The beginning of the Age of Mammals. Evol Theory 4:45–80

    Google Scholar 

  • West RM (1974) New North American middle Eocene nyctithere (Mammalia, Insectivora). J Paleontol 48:983–987

    Google Scholar 

  • Wible JG, Rougier GW, Novacek M, Asher R (2007) Cretaceous eutherians and Laurasian origin for placental mammals near the K/T boundary. Nature 447:1003–1006

    Article  CAS  PubMed  Google Scholar 

  • Wible JR, Rougier GW, Novacek MJ, Asher RJ (2009) The eutherian mammal Maelestes gobiensis from the late Cretaceous of Mongolia and the phylogeny of Cretaceous Eutheria. Bull Am Mus Nat Hist 327:1–123

    Article  Google Scholar 

  • Woodburne MO (2004) Late Cretaceous and Cenozoic Mammals of North America. Columbia University Press, New York, 391 pp

    Google Scholar 

  • Ziegler R (2007) The nyctitheriids (Lipotyphla, Mammalia) from early Oligocene fissure fillings in south Germany. Neues Jahrb Für Geol Paläontol Abh 246:183–203

    Article  Google Scholar 

Download references

Acknowledgments

We thank Richard Hulbert, Kristen MacKenzie, and Jason Bourque (UF) for help in cataloguing and preparation of the UF specimens. We thank Philip Gingerich (UM) and Gregg Gunnell (now of Duke Lemur Center) for access to specimens and comparative casts and for help with loans at UM, as well as William Sanders (UM) for help with preparation of specimens. We thank Peter Houde (New Mexico State University) for access to limestones containing invaluable fossils. We thank Stephen Chester (now of Brooklyn College) and Josh Van Houten (Department of Internal Medicine, Yale University) for micro-CT imaging done at the Yale University Core Center for Musculoskeletal Disorders microCT facility; and Doug Boyer, Jimmy Thostenson, and Judit Marigo (Duke University) for access to and assistance with the microCT facilities at the Shared Materials Instrumentation Facility at Duke University. We thank Jason Bourque, Stephen Chester, Jerry Hooker, Paul Morse, Ken Rose, and Aaron Wood for helpful discussions. We thank John Wible and an anonymous reviewer for providing helpful comments that improved the manuscript. Research was in part funded by the Miss Lucy Dickinson Fellowship, the Geological Sciences Graduate Award, and a Geological Society of America Student Research Grant to C.L.M. The version of TNT used in the cladistic analysis was produced with support by the Willi Hennig Society. This is University of Florida Contribution to Paleobiology 679.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carly L. Manz.

Appendices

Appendix 1. Taxa Selected for Analysis and Sources of Data

Outgroup

Maelestes gobiensis Wible et al., 2007—Wible et al. (2007, 2009)

Erinaceomorpha

Adunator minutus (Jepsen, 1930)—Jepsen (1930); Gingerich (1983); Secord (2008); YPM-PU 19463 (cast)

Macrocranion junnei Smith et al., 2002—Smith et al. (2002); Rose et al. (2012); UM 93378 (cast)

Nyctitheriidae

Plagioctenodon krausae Bown, 1979—Bown (1979); Bown and Schankler (1982)

Plagioctenodon savagei Bown and Schankler, 1982—Bown and Schankler (1982)

Plagioctenodon dormaalensis (Quinet, 1964)—Smith (1996) as Leptacodon dormaalensis

Plagioctenodon rosei (Gingerich, 1987)—Rose (1982) as cf. Leptacodon packi; Rose and Gingerich (1987) as cf. Leptacodon packi; Gingerich (1987) as Leptacodon rosei; UF 303728; UF 303729; UF 303730; UM 71650 (cast); UM 76895 (cast); UM 77032 (cast)

Plagioctenodon thewisseni this publication— UM 39873; UM 76906; UM 76920; UM 82576; UM 83931; UM 86725; UF 289746; UF 289747; UF 294696

Leptacodon tener Matthew and Granger, 1921—Simpson (1935); McKenna (1968); Krishtalka (1976); Scott (2003)

Leptacodon munusculum Simpson, 1935—Krishtalka (1976); Gingerich et al. (1983); Krause and Gingerich (1983); Scott (2003)

Leptacodon catulus Krishtalka, 1976—Krishtalka (1976); Gheerbrant and Hartenberger (1999)

Leptacodon packi Jepsen, 1930—Jepsen (1930); Krishtalka (1976); Secord (2008)

Leptacodon nascimentoi Estravis, 1996—Estravis(1996)Footnote 1

Leptacodon acherontus Secord, 2008—Secord (2008); YPM-PU 19957 (cast)

Leptacodon donkroni Rose et al., 2012—Rose et al. (2012)

Leptacodon proserpinae Footnote 2 Van Valen, 1978—Van Valen (1978)

Leptacodon choristus Secord, 2008—Secord (2008)

Nyctitherium velox Marsh, 1872—Robinson (1968); YPM 13510 (cast)

Nyctitherium serotinum (Marsh, 1872)—Robinson (1968)

Nyctitherium krishtalkai Christiansen and Stucky, 2013—Christiansen and Stucky (2013)

Nyctitherium christopheri Krishtalka and Setoguchi, 1977—Setoguchi (1973)as Nyctitherium robinsoni Footnote 3; Krishtalka and Setoguchi (1977)

Acrodentis rosenorum Christiansen and Stucky, 2013—Christiansen and Stucky (2013)

Ceutholestes dolosus Rose and Gingerich, 1987—Rose and Gingerich (1987); UM 82503 (cast)

Limaconyssus habrus Gingerich, 1987—Gingerich (1987); UM 86724 (cast)

Pontifactor bestiola West, 1974—West (1974); Bown (1979)

Wyonycteris chalix Gingerich, 1987—Gingerich (1987)

Wyonycteris richardi Smith, 1995—Smith (1995)

Wyonycteris primitivus Beard and Dawson, 2009—Beard and Dawson (2009)

Wyonycteris galensis Secord, 2008—Secord (2008); YPM-PU 14138 (cast)

Wyonycteris microtis Secord, 2008—Secord (2008); YPM-PU 19479 (cast)

Plagioctenoides microlestes Bown, 1979—Bown (1979); Rose et al. (2012)

Plagioctenoides tombowni Rose et al., 2012—Rose et al. (2012)

Amphidozotherium cayluxi Filhol, 1877—Sigé (1976)

Saturninia gracilis Stehlin, 1940—Crochet (1974); Sigé (1976)

Saturninia mamertensis Sigé, 1976— Sigé (1976)

Saturninia grandis Sigé, 1976— Sigé (1976)

Saturninia rigasii Hooker and Weidman, 2000—Hooker and Weidmann (2000)

Saturninia ceciliensis Storch and Haubold, 1989—Storch and Haubold (1989)

Saturninia intermedia Sigé, 1976— Sigé (1976)

Saturninia pirenaica Gibert Clols and Agustí Ballester, 1979—Gibert Clols and Agustí Ballester (1979); Sigé (1997); Ziegler (2007)

Saturninia pelissiei Sigé, 1997—Sigé (1997); Ziegler (2007)

Saturninia carbonum Sigé and Storch, 2001—Sigé (2001)

Cryptotopos beatus Crochet, 1974—Crochet (1974); Sigé (1976) as Saturninia beata; Hooker and Weidmann (2000); Ziegler (2007)

Cryptotopos woodi (Cray, 1973)—Cray (1973); Ziegler (2007)

Cryptotopos hartenbergi (Sigé, 1976)— Sigé (1976); Ziegler (2007)

Scraeva hatherwoodensis Cray, 1973—Cray 1973

Placentidens lotus Russell et al.1973—Russell et al. (1973)

Euronyctia montana Sigé, 1997— Sigé (1997)

Euronyctia grisollensis (Sigé, 1976)—Sigé (1976); Sigé (1997)

Paradoxonycteris soricodon Revilliod, 1922—Hooker and Weidman (2000)

Asionyctia guoi Missiaen and Smith, 2005—Missiaen and Smith (2005)

Bumbanius rarus Russell and Dashzeveg, 1986—Russell and Dashzeveg (1986); Lopatin (2006)

Eosoricodon terrigena Lopatin, 2005—Lopatin (2005)

Oedolius perexiguus Russell and Dashzeveg, 1986—Russell and Dashzeveg (1986); Lopatin (2006)

Edzenius lus Lopatin, 2006—Lopatin (2006)

Appendix 2. Unambiguous Synapomorphies for Key Nodes

Node A

52 (1) upper molar stylocone absent

61 (1) upper molar hypocone present

Node B: Adunator minutus + Macrocranion junnei

22 (2) upper ultimate premolar postcingulum absent

25 (2) M1 trigonid less wide than talonid

26 (2) M2 trigonid less wide than talonid

50 (1) M1 parastylar lobe anterolabially projecting

63 (1) M3 parastylar lobe small

Node C: Nyctitheriidae

14 (1) lower ultimate premolar paraconid lingual to midline

34 (1) lower molar paraconid anteriorly projecting

37 (2) lower molar protoconid larger than metaconid

46 (2) lower molar entoconid smaller than hypoconid

66 (0) posteriormost mental foramen below penultimate premolar or more anterior

Node D

15 (2) lower ultimate premolar metaconid present

48 (1) upper molar length between 0.7-0.95 of the width

Node E: North American and European nyctitheriids

17 (1) lower ultimate premolar talonid basin present

18 (1 or 2) lower ultimate premolar talonid has two or three cusps

26 (1) M2 trigonid width subequal to talonid

44 (0) lower molar hypoconulid positioned on midline

46 (0) lower molar entoconid subequal in height to hypoconid

58 (2) upper molar paraconule lingual to metaconule and closer to protocone

Node F

14 (0) lower ultimate paraconid on midline

21 (0) upper ultimate premolar precingulum present

33 (0) lower molar paraconid cuspate in shape

37 (1) lower molar protoconid and metaconid subequal in size

Node G

24 (1) upper ultimate premolar metacone present

49 (0) M1 ectoflexus present

54 (1) upper molar centrocrista strong and rectilinear

55 (1) upper molar precingulum strong, reaching past paraconule

Node H

11 (3) lower ultimate premolar width greater than 0.8 of the length

14 (1) lower ultimate premolar paraconid lingual to midline

29 (1) M1 length greater than that of M2

40 (0) lower molar cristid obliqua meets the protocristid lingual to notch

47 (1) lower molar postcingulid present

Node I: Placentidens lotus + Ceutholestes dolosus

6 (1) lower penultimate premolar metaconid present

37 (0) lower molar metaconid larger than protoconid

46 (1) lower molar entoconid taller than hypoconid

Node J: Nyctitherium

20 (1) anterodorsal shift in upper ultimate premolar visible from labial view

23 (1) upper ultimate premolar hypocone present

56 (0) upper molar paraconule small, not strongly winged

60 (1) upper molar postcingulum greatly expanded into shelf

Node K

7 (1) lower penultimate premolar anteriorly canted

Node L

8 (1) lower penultimate premolar smaller than surrounding premolars

Node M: Plagioctenodon

12 (2) lower ultimate premolar paraconid present and high on anterior of trigonid

59 (1) upper molar paracone and metacone height subequal

Node N

33 (1) lower molar paraconid crestiform in shape

40 (2) lower molar cristid obliqua ascends the protocristid to the tip of the metaconid

55 (2) upper molar precingulum strong with pericone

Node O

11 (1) lower ultimate premolar width between 0.5-0.65 of the length

43 (1) cristid obliqua is deeply concave occlusally

44 (2) lower molar hypoconulid positioned lingually in nyctalodont condition

46 (1) lower molar entoconid taller than hypoconid

66 (1) posteriormost mental foramen below ultimate premolar or more posterior

Node P: Plagioctenoides

18 (0) lower ultimate premolar has one talonid cusp

Node Q: Wyonycteris + Pontifactor

27 (0) lower molar trigonid anteroposteriorly compressed

Node R: W. galensis + W. chalix + W. richardi + P. bestiola

16 (0) lower ultimate premolar talonid narrower than trigonid or absent

31 (1) lower molar metaconid twinned

33 (0) lower molar paraconid cuspate in shape

53 (1) upper molar mesostyle present

54 (2) upper molar centrocrista dilambdodont

Pontifactor bestiola autapomorphies

55 (1) upper molar precingulum strong, reaching past paraconule

58 (1) upper molar paraconule lingual to metaconule and halfway to protocone

59 (1) upper molar paracone and metacone subequal

60 (1) upper molar postcingulum greatly expanded into shelf

Node S

22 (1) upper ultimate premolar postcingulum greatly expanded into shelf

23 (1) upper ultimate premolar hypocone present

60 (1) upper molar postcingulum greatly expanded into shelf

64 (1) dentary has one mental foramen

Node T: Cryptotopos?

11 (3) lower ultimate premolar width greater than 0.8 of the length

33 (0) lower molar paraconid cuspate in shape

42 (1) lower molar cristid obliqua has notch halfway along the length

Node U: Cryptotopos?

27 (0) lower molar trigonid anteroposteriorly compressed

43 (2) cristid obliqua is convex occlusally

54 (0) upper molar centrocrista absent or weak

Node V

55 (0) upper molar precingulum absent or weak

56 (0) upper molar paraconule small, not strongly winged

57 (0) upper molar metaconule small, not strongly winged

Node W

47 (1) lower molar postcingulid present

Node X: Paradoxonycteris + Euronyctia

54 (2) upper molar centrocrista dilambdodont

56 (2) upper molar paraconule large, not strongly winged

57 (1) upper molar metaconule small, strongly winged

Node Y

25 (0) M1 trigonid wider than talonid

26 (0) M2 trigonid wider than talonid

33 (0) lower molar paraconid cuspate in shape

37 (2) lower molar protoconid larger than metaconid

Node Z: Scraeva + Limaconyssus

13 (1) lower ultimate premolar paraconid is large cusp

28 (0) lower molar trigonid height twice that of the talonid

Appendix 3. Characters Used in Cladistic Analysis

1. Lower incisor shape: conical (0), spatulate (1), or pectinate (2)

2. Second lower incisor number of cusps: one (0), two (1), three (2), four (3), or five (4)

3. Lower canine posterior shelf or basal cusp: absent (0) or present (1)

4. Second lower premolar number of roots: two (0) or one (1)

5. Lower penultimate premolarFootnote 4 number of roots: two (0) or one (1)

6. Lower penultimate premolar metaconid: absent (0) or present (1)

7. Lower penultimate premolar protoconid orientation: dorsoventral (0) or anteriorly canted (1)

8. Lower penultimate premolar size relative to other premolars: similarly sized to large (0) or small (1)

9. Upper penultimate premolar protocone: present (0) or absent (1)

10. Upper penultimate premolar metacone: absent (0) or present (1)

11. Lower ultimate premolar shape (width/length): less than 0.5 (0), 0.5-0.65 (1), 0.65-0.8 (2), or more than 0.8 (3)

12. Lower ultimate premolar paraconid position: absent (0), present and low on trigonid (1), or present and high on trigonid (2)

13. Lower ultimate premolar paraconid size: absent or very small cuspule on low anterior cingulid (0) or large cusp (1)

14. Lower ultimate premolar paraconid or anterior-most projection of tooth position: on midline or buccal to midline (0) or lingual to midline (1)

15. Lower ultimate premolar metaconid: absent (0), swelling (1), or present (2)

16. Lower ultimate premolar width of talonid: narrower than trigonid (0) or as wide as or wider than trigonid (1)

17. Lower ultimate premolar talonid basin: absent (0) or present (1)

18. Lower ultimate premolar talonid number of cusps: one (0), two (1), or three (2)

19. Upper ultimate premolar highly waisted: present (0) or absent (1)

20. Upper ultimate premolar anterodorsal shift (from labial view): absent (0) or present (1)

21. Upper ultimate premolar precingulum: present (0) or absent (1)

22. Upper ultimate premolar postcingulum size: small (0), greatly expanded (1), or absent (2)

23. Upper ultimate hypocone: absent (0) or present (1)

24. Upper ultimate premolar metacone: absent (0) or present (1)

25. M1 trigonid width: wider than talonid (0), equal to talonid (1), or narrower than talonid (2)

26. M2 trigonid width: wider than talonid (0), equal to talonid (1), or narrower than talonid (2)

27. Lower molarFootnote 5 trigonid length: anteroposteriorly compressed (0) or about equal to talonid or longer (1)

28. Lower molar trigonid height: nearly twice the height of the talonid (0), less than twice the height of the talonid (1), or nearly the same height as the talonid (2)

29. M1 and M2 length: subequal, within 5% (0), M1 longer than M2 (1), or M2 longer than M1 (2)

30. M2 and M3 length: M3 longer than M2 (0), subequal, within 5% (1), or M2 longer than M3 (2)

31. Lower molar (more visible on the M1) metaconid “twinned,” or a groove runs alongside the cristid obliqua up the posterior surface of the metaconid: absent (0) or present (1)

32. Lower molar precingulid: strong, anteriorly projecting (0) or reduced, not projecting (1)

33. Lower molar paraconid shape: cuspate (0) or crestiform (1)

34. Lower molar paraconid anteriorly projecting: absent (0) or present (1)

35. Lower molar paraconid position: on midline (0) or lingually positioned (1)

36. Lower molar protoconid position relative to metaconid: protoconid anterior to metaconid (0) or the cusps are transverse (1)

37. Lower molar protoconid and metaconid size: metaconid is larger (0), subequal (1), or protoconid is larger (2)

38. Lower molar protoconid and metaconid height: subequal (0), protoconid is taller (1), or metaconid is taller (2)

39. Lower molar labial cingulid: absent (0) or present along length of tooth (1)

40. Lower molar cristid obliqua position: ends lingual to notch in protocristid (0), ends labial to notch in protocristid (1), or ascends to apex of metaconid (2)

41. Lower molar mesoconid on cristid obliqua: absent (0) or present (1)

42. Lower molar notch in cristid obliqua: absent (0), present, located halfway along cristid obliqua (1), or present, located on distal third of cristid obliqua (2)

43. Lower molar cristid obliqua shape in labial view: straight or slightly concave occlusally (0), deeply concave occlusally (1), or convex occlusally (2)

44. Lower molar hypoconulid position: on midline (0), lingual to midline (1), close to entoconid in nyctalodont conditionFootnote 6 (2), or incipient on postcingulid to absent (3)

45. Lower molar entoconid position: anterolingual to hypoconulid (0) or on posterolingual margin of tooth and even posteriorly with hypoconulid (1)

46. Lower molar entoconid height: subequal to hypoconid (0) or taller than hypoconid (1)

47. Lower molar postcingulid: absent (0) or present (1)

48. Upper molar shape (length/width): less than 0.7 (0), 0.7-0.95 (1), or greater than 0.95 (2)

49. M1 ectoflexus: present (0) or absent (1)

50. M1 parastylar lobe orientation: anteriorly projecting (0) or anterolabially projecting (1)

51. M2 ectoflexus: present, relatively deep (0) or absent to very shallow (1)

52. Upper molar stylocone (stylar cusp B): present (0) or absent (1)

53. Upper molar mesostyle: absent (0) or present (1)

54. Upper molar centrocrista (between protocone and metacone): absent or weak (0), strong, rectilinear (1), or strong, dilambdodont (2)

55. Upper molar precingulum: unlobed and small (0), unlobed and large, reaching labially past paraconule (1), or with pericone (2)

56. Upper molar paraconule: small and not strongly winged (0), large and strongly winged (1), or large and not strongly winged (2)

57. Upper molar metaconule: small and not strongly winged (0), large and strongly winged (1), or large and not strongly winged (2)

58. Upper molar paraconule and metaconule positions: level with each other transversely, closer to paracone and metacone than protocone (0), paraconule more lingual than metaconule and located halfway between paracone and protocone, metaconule closer to metacone than protocone (1), or paraconule more lingual than metaconule and located closer to protocone than paracone, metaconule halfway between metacone and protocone (2)

59. Upper molar paracone and metacone height: paracone taller than metacone (0) or subequal (1)

60. Upper molar postcingulum size: absent or small (0) or expanded into a large shelf (1)

61. Upper molar hypocone: absent (0) or present (1)

62. Upper molar postcingulum shape: flat posteriorly (0) or rounded posteriorly (1)

63. M3 parastylar lobe size: large, expanded anterolabially (0) or small (1)

64. Number of mental foramina: two (0) or one (1)

65. Location of anteriormost mental foramen: below P1 or anterior (0), below P2 (1), or below penultimate premolar or posterior

66. Location of posteriormost mental foramen (this character is coded if only one mental foramen): below penultimate premolar or more anterior (0), below ultimate premolar or more posterior (1)

Appendix 4. Data Matrix Used in Cladistic Analysis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manz, C.L., Bloch, J.I. Systematics and Phylogeny of Paleocene-Eocene Nyctitheriidae (Mammalia, Eulipotyphla?) with Description of a new Species from the Late Paleocene of the Clarks Fork Basin, Wyoming, USA. J Mammal Evol 22, 307–342 (2015). https://doi.org/10.1007/s10914-014-9284-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-014-9284-3

Keywords

Navigation