Skip to main content
Log in

Evolutionary Divergence and Convergence in Shape and Size Within African Antelope Proximal Phalanges

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Morphological convergence amongst species inhabiting similar environments but having different evolutionary histories is a concept central to evolutionary biology. Cases of divergent evolution, where there is morphological divergence between closely related species exploiting different environments, are less well studied. Here we show divergent evolution in the morphology of the proximal phalanges of several closely related African antelope species inhabiting different environments. This morphological divergence was consistently observed in both a neutral morphospace and an externally ordinated morphospace. Divergence, but not convergence, was also observed when size and shape were considered independently. Finally, convergent evolution of the morphology of the proximal phalanges was observed, but only in the externally ordinated morphospace. Size shows less correlation with phylogeny than does shape. Therefore, we suggest that divergence in size will occur more readily when a species encounters new environmental conditions than divergence in shape. These findings are compatible with observations of rapid dwarfing on islands (Foster’s rule).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Almécija S, Alba DM, Moyà-Solà S (2009) Pierolapithecus and the functional morphology of Miocene ape hand phalanges: paleobiological and evolutionary implications. J Hum Evol 57: 284–297

    Article  PubMed  Google Scholar 

  • Almécija S, Moyà-Solà S, Alba DM (2010) Early origin for human-like precision grasping: a comparative study of pollical distal phalanges in fossil hominins. PLoS ONE 5(7): e11727 (doi:10.1371/journal.pone.0011727)

    Article  PubMed  Google Scholar 

  • Almécija S, Alba DM, Moyà-Solà S (2012) The thumb of Miocene apes: new insights from Castell de Barberà (Catalonia, Spain). Am J Phys Anthropol. doi:10.1002/ajpa.22071

  • Bishop LC, Plummer TW, Hertel F, Kovarovic K (2011) Paleoenvironments of Laetoli, Tanzania as determined by antelope habitat preferences. In: Harrison T (ed) Paleontology and Geology of Laetoli: Human Evolution in Context. Springer, Dordrecht, pp 355–366

    Chapter  Google Scholar 

  • Brashares JS, Garland T, Arcese P (2000) Phylogenetic analysis of coadaptation in behavior, diet, and body size in the African antelope. Behav Ecol 11:452–463

    Article  Google Scholar 

  • Bro-Jørgensen J (2008) Dense habitat selecting for small body size: a comparative study on bovids. Oikos 117: 729–737

    Article  Google Scholar 

  • Congdon KA (2012) Interspecific and ontogenetic variation in proximal pedal phalangeal curvature of great apes (Gorilla gorilla, Pan troglodytes and Pongo pygmaeus) Int J Primatol 33:418–427

    Article  Google Scholar 

  • Damuth J, MacFadden BJ (1990) Body Size in Mammalian Paleobiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Deane AS, Begun DR (2008) Broken fingers: retesting locomotor hypotheses for fossil hominoids using fragmentary proximal phalanges and high-resolution polynomial curve fitting (HR-PCF). J Hum Evol 55:691–701

    Article  PubMed  Google Scholar 

  • DeGusta D, Vrba E (2003) A method for inferring paleohabitats from the functional morphology of bovid astragali. J Archaeol Sci 30:1009–1022

    Article  Google Scholar 

  • DeGusta D, Vrba E (2005) Methods for inferring paleohabitats from the functional morphology of bovid phalanges. J Archaeol Sci 32:1099–1113. doi:10.1016/j.jas.2005.02.010

    Article  Google Scholar 

  • Dorst J, Dandelot P (1986) A Field Guide to Larger Mammals of Africa. Collins, London

    Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–97. doi:10.1093/nar/gkh340

    Article  CAS  PubMed  Google Scholar 

  • Evans AR, Jones D, Boyer AG, Brown JH, Costa DP, Morgan Ernest SK, Fitzgerald EMG, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JG, Saarinen JJ, Sibly RM, Smith FA, Stephens PR, Theodor JM, Uhen MD (2012) The maximum rate of mammal evolution. Proc Nat Acad Sci USA. doi:10.1073/pnas.1120774109

  • Foster JB (1964) Evolution of mammals on islands. Nature 202: 234–235. doi:10.1038/202234a0

    Article  Google Scholar 

  • Gagnon M, Chew AE (2000) Dietary preferences in extant African bovidae. J Mammal 81:490–511

    Article  Google Scholar 

  • Gatesy J, Amato G, Vrba E, Schaller G, DeSalle R (1997) A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol Phylogenet Evol 7:303–319. doi:10.1006/mpev.1997.0402

    Article  CAS  PubMed  Google Scholar 

  • Gentry AW (1970) The Bovidae (Mammalia) of the Fort Ternan fossil fauna. In: Leakey LSB, Savage RJG (eds) Fossil Vertebrates of Africa, vol. 2. Academic Press, London, pp 243–323

    Google Scholar 

  • Goloboff PA, Farris JS, Nixon KN (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786. doi:10.1111/j.1096-0031.2008.00217.x

    Article  Google Scholar 

  • Griffin NL, Richmond BG (2010) Joint orientation and function in great ape and human proximal pedal phalanges. Am J Phys Anthropol 141:116–123

    PubMed  Google Scholar 

  • Hamrick MW (2001) Development and evolution of the mammalian limb: adaptive diversification of nails, hooves and claws. Evol Dev 3:355–363

    Article  CAS  PubMed  Google Scholar 

  • Hassanin A, Ropiquet A (2004) Molecular phylogeny of the tribe Bovini (Bovidae, Bovinae) and the taxonomic status of the Kouprey, Bos sauveli Urbain 1937. Mol Phylogenet Evol 33:896–907

    Article  CAS  PubMed  Google Scholar 

  • Hertel F (1994) Diversity in body size and feeding morphology within past and present vulture assemblages. Ecology 75:1074–1084. doi:10.2307/1939431

    Article  Google Scholar 

  • Hildebrand M, Goslow T (2001) Analysis of Vertebrate Structure, 5th edn. John Wiley and Sons, New York

    Google Scholar 

  • Kappelman J (1988) Morphology and locomotor adaptations of the bovid femur in relation to habitat. J Morphol 198: 119–130. doi:10.1002/jmor.1051980111

    Article  CAS  PubMed  Google Scholar 

  • Kappelman J (1991) The paleoenvironment of Kenyapithecus at Fort Ternan. J Hum Evol 20:95–129. doi:10.1016/0047-2484(91)90053-X

    Article  Google Scholar 

  • Kappelman J, Plummer TW, Bishop LC, Duncan A, Appleton S (1997) Bovids as indicators of Plio-Pleistocene paleoenvironments of East Africa. J Hum Evol 32: 95–129. doi:10.1006/jhev.1996.0105

    Article  Google Scholar 

  • Kent GC, Miller L (1997) Comparative Anatomy of the Vertebrates, 8th edn. Wm. C. Brown Publishers, Dubuque, IA

    Google Scholar 

  • Kingdon J (1997) The Kingdon Guide to African Mammals. Academic Press, San Diego

    Google Scholar 

  • Kivell TL, Kibli JM, Churchill SE, Schmid P, Berger LR (2011) Australopithecus sediba hand demonstrates mosaic evolution of locomotor and manipulative abilities. Science 333:1411–1417

    Article  CAS  PubMed  Google Scholar 

  • Klein RG, Fransiscus RG, Steele TE (2010) Morphometric identification of bovid metapodials to genus and implications for taxon-free habitat reconstruction. J Archaeol Sci 37:389–401. doi:10.1016/j.jas.2009.10.001

    Article  Google Scholar 

  • Kovarovic KM, Andrews P (2007) Bovid postcranial ecomorphological survey of the Laetoli paleoenvironment. J Hum Evol 52:663–690

    Article  PubMed  Google Scholar 

  • Kovarovic K, Aiello LC, Cardini A, Lockwood CA (2011) Discriminant functions analyses in archaeology: are classification rates too good to be true? J Archaeol Sci 38:3006–3018

    Article  Google Scholar 

  • Macleod N, Rose KD (1993) Inferring locomotor behavior in Paleogene mammals via eignenshape analysis. Am J Sci 293:300–355

    Article  Google Scholar 

  • Millien V, Damuth J (2004) Climate change and size evolution in an island rodent species: new perspectives on the island rule. Evolution 58:1353–1360. doi:10.1111/j.0014-3820.2004.tb01713.x

    PubMed  Google Scholar 

  • Nelson E, Rolian C, Cashmore L, Shultz S (2011) Digit ratios predict polygyny in early apes, Ardipithecus, Neanderthals and early modern humans but not in Australopithecus. Proc R Soc B 278:1556–1563.

    Article  PubMed  Google Scholar 

  • O’Keefe FR (2002) The evolution of plesiosaur and pliosaur morphotypes in the Plesiosauria (Reptilia: Sauropterygia). Paleobiology 28:101–112. doi:10.1666/0094-8373

    Article  Google Scholar 

  • Peters RH (1983) The Ecological Implications of Body Size. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Plummer TW, Bishop LC (1994) Hominid paleoecology at Olduvai Gorge, Tanzania as indicated by antelope remains. J Hum Evol 29:321–362. doi:10.1006/jhev.1994.1035

    Google Scholar 

  • Plummer TW, Bishop LC, Hertel F (2008) Habitat preference of extant African bovids based on astragalus morphology: operationalizing ecomorphology for palaeoenvironmental reconstruction. J Archaeol Sci 35:3016–3027. doi:10.1016/j.jas.2008.06.015

    Article  Google Scholar 

  • Pough FH, Janis CM, Heiser JB (2008) Vertebrate Life, 8th edn. Benjamin Cummings, NY

    Google Scholar 

  • Rolian C, Lieberman DE, Hamill J, Scott JW, Werbel W (2009) Walking, running and the evolution of short toes in humans. J Experim Biol 212:713–721

    Article  Google Scholar 

  • Schluter D (2000) The Ecology of Adaptive Radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schmidt-Nielson K (1984) Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Scott KM (1985) Allometric trends and locomotor adaptations in the Bovidae. Bull Am Mus Nat Hist 197:197–288

    Google Scholar 

  • Smith FA, Brown JH, Haskell JP, Lyons SK, Alroy J, Charnov EL, Dayan T, Enquist BJ, Ernest SKM, Hadly EA, Jones KE, Kaufman DM, Marquet PA, Maurer BA, Niklas KJ, Porter WP, Tiffney B, Willig MR (2004) Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am Nat 163:672–691. doi:10.1086/382898

    Article  PubMed  Google Scholar 

  • Sondaar PY (1991) Island mammals of the past. Sci Progr 75: 249–264

    CAS  PubMed  Google Scholar 

  • Stayton CT (2005) Morphological evolution of the lizard skull: a geometric morphometrics survey. J Morphol 263:47–59. doi:10.1002/jmor.10288

    Article  PubMed  Google Scholar 

  • Stayton CT (2006) Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 60:824–841. doi:10.1111/j.0014-3820.2006.tb01160.x

    PubMed  Google Scholar 

  • van Aspen EN (2010) Ecomorphological adaptations to climate and substrate in late middle Pleistocene caballoid horses. Palaeogeogr Palaeoclimat Palaeoecol 297:584–596

    Article  Google Scholar 

  • Vrba ES (1980) The significance of bovid remains as indicators of environment and predation patterns. In: Beherensmeyer AK, Hill AP (eds) Fossils in the Making: Vertebrate Taphonomy and Paleoecology. University of Chicago Press, Chicago, pp 247–271

    Google Scholar 

  • Yom-Tov Y, Yom-Tov S, Moller H (1999) Competition, coexistence, and adaptation amongst rodent invaders to Pacific and New Zealand islands. J Biogeogr 26: 947–958. doi:10.1046/j.1365-2699.1999.00338.x

    Article  Google Scholar 

Download references

Acknowledgments

We thank E. Westwig (AMNH), L. Gordon (NMNH), and the NHML for their curatorial assistance; JL and LCB acknowledge the support of The Leverhulme Trust (FC00754C); TP acknowledges support from the Professional Staff Congress-City University of New York Research Award Program; FH acknowledges the CSUN Office of Research and Sponsored Projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Louys.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary information

(XLSX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Louys, J., Montanari, S., Plummer, T. et al. Evolutionary Divergence and Convergence in Shape and Size Within African Antelope Proximal Phalanges. J Mammal Evol 20, 239–248 (2013). https://doi.org/10.1007/s10914-012-9211-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-012-9211-4

Keywords

Navigation