Skip to main content

Advertisement

Log in

Reconstructing Body Size in Extinct Crown Cetacea (Neoceti) Using Allometry, Phylogenetic Methods and Tests from the Fossil Record

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Living cetaceans exhibit interspecific size ranging across several orders of magnitude, and rank among the largest vertebrates ever. Details of how cetaceans evolved different body sizes, however, remain obscure, because they lack basic morphological proxies that have been traditionally used in other fossil vertebrates. Here, we reconstruct the body size of extinct crown group cetaceans (Neoceti) using different regression methods on extant skull and length data, in a phylogenetic context. Because most fossil cetaceans are fragmentary, we developed regression equations to predict total length based on cranial metrics that are preserved on most fossil crania. The resultant regression equations are based on a database of skull and length data from most extant lineages of cetaceans (n = 45 species; 272 specimens), sampling all living mysticete genera and all major clades of odontocetes. In generating predictive equations, we compared both conventional species data regression and independent contrast regression methods, as well as single trait predictors and a new approach that combines the advantages of a partial least squares (PLS) multivariate regression with independent contrasts. This last approach leverages the predictive power of using multiple correlated proxies. Lastly, we used the rare occurrences of fossil cetaceans with preserved total lengths to test the performance of our predictive equations for reconstructing body size from skull measurements alone. Our results demonstrate that incorporating information about phylogenetic relationships and multiple cranial measures in PLS scaling studies increases the accuracy of reconstructed body size, most notably by reducing prediction intervals by more than 70%. With this empirical foundation, we highlight the outline of major features in the evolution of body size for Neoceti and future opportunities to use these metrics for paleobiological questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnarsson I, May-Collado LJ (2008) The phylogeny of Cetartiodactyla: the importance of dense taxon sampling, missing data, and the remarkable promise of Cytochrome b to provide reliable species-level phylogenies. Mol Evol Phylogen 48:964—985

    Article  CAS  Google Scholar 

  • Barnes LG, Kimura M, Furusawa H, Sawamura H (1994) Classification and distribution of Oligocene Aetiocetidae (Mammalia; Cetacea; Mysticeti) from western North America and Japan. Island Arc 3:392—431

    Article  Google Scholar 

  • Bianucci G, Lambert O, Post K (2010) High concentration of long-snouted beaked whales (genus Messapicetus) from the Miocene of Peru. Palaeontology 53:1077—1098

    Article  Google Scholar 

  • Bianucci G, Post K, Lambert O (2008) Beaked whale mysteries revealed by seafloor fossils trawled off South Africa. S Afr J Sci 104:140—142

    Google Scholar 

  • Bonner JT (2006) Why Size Matters: from Bacteria to Blue Whales. Princeton University Press, Princeton

    Google Scholar 

  • Brand LR, Esperante R, Chadwick AV, Poma O, Alomia M (2004) Fossil whale preservation implies high diatom accumulation rate in the Miocene-Pliocene Pisco Formation of Peru. Geology 32:165—168

    Article  Google Scholar 

  • Brown JH (1995) Macroecology. University of Chicago Press, Chicago

    Google Scholar 

  • Calder WA (1984) Size, Function and Life History. Harvard University Press, Cambridge

    Google Scholar 

  • Carroll RL (1997) Mesozoic marine reptiles as models of long-term, large-scale evolutionary phenomena. In: Callaway JM, Nicholls EL (eds) Ancient Marine Reptiles. Academic Press, San Diego, pp 467—489

    Chapter  Google Scholar 

  • Clauset A, Erwin DH (2008) The evolution and distribution of species body size. Science 321:399—401

    Article  PubMed  CAS  Google Scholar 

  • Clementz MT, Sorbi S, Domning DP (2009)
Evidence of Cenozoic environmental and ecological change from stable isotope analysis of sirenian remains from the Tethys-Mediterranean region. Geology 37:307—310

    Article  CAS  Google Scholar 

  • Colbert EH (1962) The weights of dinosaurs. Am Mus Novitates 2076:1—16

    Google Scholar 

  • Cunningham CW (1999) Some limitations of ancestral character-state reconstruction when testing evolutionary hypotheses. Syst Biol 48:665—674

    Article  Google Scholar 

  • Currey JD (2004) Bones. Structure and Mechanics, Princeton University, Princeton

    Google Scholar 

  • Damuth J, MacFadden BJ (1990) Body Size in Mammalian Paleobiology. Estimation and Biological Implications. Cambridge University Press, Cambridge

    Google Scholar 

  • Muizon C de (1988) Les vertébres fossiles de la Formation Pisco (Perou). Troisième partie: Les Odontocétès (Cetacea, Mammalia) du Miocene. Éditions Recherche sur les Civilisations 78:1—244

    Google Scholar 

  • Deméré TA, Berta A, McGowen MR (2005) The taxonomic and evolutionary history of fossil and modern balaenopteroids. J Mammal Evol 12:99—143

    Article  Google Scholar 

  • Domning DP (1978) Sirenian evolution in the North Pacific Ocean. Univ Calif Publ Geol Sci 118:1—176

    Google Scholar 

  • Domning DP (2001) Evolution of the Sirenia and Desmostylia. In: Mazin J-M, de Buffrenil V (eds) Secondary Adaptation of Tetrapods to Life in Water. Proceedings of the International Meeting, Poitiers, 1996. Verlag Dr Friedriech Pfeil, München, pp 151—168

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1—15

    Article  Google Scholar 

  • Finarelli JA, Flynn JJ (2006) Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst Biol 55:301—313

    Article  PubMed  Google Scholar 

  • Fitzgerald EMG (2010) The morphology and systematics of Mammalodon colliveri (Cetacea: Mysticeti), a toothed mysticete from the Oligocene of Australia. Zool J Linn Soc 158:367—476

    Article  Google Scholar 

  • Fordyce RE (2009) Cetacean evolution. In: Perrin WF, Thewissen JGM, Würsig B (eds) Encyclopedia of Marine Mammals. Elsevier, San Diego, pp 201—207

    Google Scholar 

  • Fordyce E, Muizon C de (2001) Evolutionary history of whales: a review. In: Mazin J-M, de Buffrenil V (eds) Secondary Adaptation of Tetrapods to Life in Water. Proceedings of the International Meeting, Poitiers, 1996. Verlag Dr Friedriech Pfeil, München, pp 169—234

  • Gambell R (1970) Weight of a sperm whale, whole and in parts. S Afr J Sci 66: 225—27

    Google Scholar 

  • Garland T Jr, Bennett AF, Rezende EL (2005) Phylogenetic approaches in comparative physiology. J Exp Biol 218:3015—3035

    Article  Google Scholar 

  • Garland T Jr, Harvey PH, Ives AR (1992) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst Biol 41:18—32

    Google Scholar 

  • Garland T Jr, Ives AR (2000) Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. Am Nat 155:346—364

    Article  Google Scholar 

  • Garland T Jr, Midford PE, Ives AR (1999) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. Am Zool 39:374—388

    Google Scholar 

  • Geisler JH, McGowen MR, Yang G, Gatesy J (2011) A supermatrix analysis of genomic, morphological, and paleontological data from crown Cetacea. BMC Evol Biol 11:112. doi:10.1186/1471-2148-11-112

    Article  PubMed  CAS  Google Scholar 

  • Geisler JH, Sanders AE (2003) Morphological evidence for the phylogeny of Cetacea. J Mammal Evol 10: 23—129

    Article  Google Scholar 

  • Gingerich PD (1998) Paleobiological perspectives on Mesonychia, Archaeoceti, and the origin of whales. In: Thewissen JGM (ed) Emergence of Whales: Evolutionary Patterns in the Origin of Cetacea. Plenum, New York, pp 423—449

    Google Scholar 

  • Gingerich PD (2005a) Cetacea. In: Rose KD and Archibald JD (eds) Placental Mammals: Origin, Timing, and Relationships of the Major Extant Clades. Johns Hopkins University Press, Baltimore, pp 234—252

    Google Scholar 

  • Gingerich PD (2005b) Aquatic adaptation and swimming mode inferred from skeletal proportions in the Miocene desmostylian Desmostylus. J Mammal Evol 12:183—194

    Article  Google Scholar 

  • Gingerich PD, Haq MU, Zalmout IS, Khan IH, Malakani MS (2001) Origin of whales from early artiodactyls: hands and feet of Eocene Protocetidae from Pakistan. Science 293:2239—2242

    Article  PubMed  CAS  Google Scholar 

  • Gingerich PD, Smith BH (1984) Allometric scaling in the dentition of primates and insectivores. In: Jungers WL (ed) Size and Scaling in Primate Biology. Plenum, New York, pp 257—272

    Google Scholar 

  • Gingerich PD, Smith BH, Rosenberg K (1982) Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am J Phys Anthropol 58:81—100

    Article  PubMed  CAS  Google Scholar 

  • Gingerich PD, Smith BH, Simons EL (1990) Hind limbs of Eocene Basilosaurus: evidence of feet in whales. Science 249:154—157

    Article  PubMed  CAS  Google Scholar 

  • Gingerich PD, Ul-Haq M, Koenigswald W von, Sanders WJ, Smith BH, Zalmout IS (2009) New protocetid whale from the middle Eocene of Pakistan: birth on land, precocial development, and sexual dimorphism. PLoS ONE 4(2): e4366. doi:10.1371/journal.pone.0004366

    Article  PubMed  Google Scholar 

  • Goldbogen JA, Potvin J, Shadwick RE (2010) Skull and buccal cavity allometry increase mass-specific engulfment capacity in fin whales. Proc Roy Soc B 277:861—868

    Article  Google Scholar 

  • Gordon CL (2003) A first look at estimating body size in dentally conservative marsupials. J Mammal Evol 10:1—21

    Article  Google Scholar 

  • Grafen A (1989) The phylogenetic regression. Phil Trans Roy Soc B 326:119—157

    Article  CAS  Google Scholar 

  • Inuzuka N (1996) Body size and mass estimates of desmostylians (Mammalia). J Geol Soc Japan 102:816—819

    Google Scholar 

  • Jadwiszczak P (2001) Body size of Eocene Antarctic penguins. Polish Polar Res 22:147—158

    Google Scholar 

  • Kemper CM, Leddard P (1999) Estimating body length of pygmy right whales (Caperea marginata) from measurements of the skeleton and baleen. Mar Mammal Sci 15:683—700

    Article  Google Scholar 

  • LaBarbera M (1989) Analyzing body size as a factor in ecology and evolution. Annu Rev Ecol Syst 20:97—117

    Article  Google Scholar 

  • Lambert O, Bianucci G, Post K, Muizon C de, Salas-Gismondi R, Urbina M, Reumer J (2010) The giant bite of a new raptorial sperm whale from the Miocene epoch of Peru. Nature 466:105—108

    Article  PubMed  CAS  Google Scholar 

  • Lindberg DR, Pyenson ND (2006) Evolutionary patterns in Cetacea: fishing up prey size through deep time. In: Estes JA, Demaster DP, Doak DF, Williams TM, Brownell RL Jr (eds) Whales, Whaling, and Ocean Ecosystems. University of California Press, Berkeley, pp 67—81

    Google Scholar 

  • Lockyer C (1976) Body weights of some species of large whales. J Cons Int Explor Mer 36:259—273

    Google Scholar 

  • Mackintosh NA, Wheeler JFG (1929) Southern blue and fin whales. Disc Rep 1:257—510

    Google Scholar 

  • Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.6. Available from: http://mesquiteproject.org.

  • Marino L, McShea D, Uhen MD (2004) The origin and evolution of large brains in toothed whales. Anat Rec 281A:1247—1255

    Article  Google Scholar 

  • Marino L, Uhen MD, Frohlich B, Aldag JM, Blane C, Bohaska D, Whitmore FC Jr (2000) Endocranial volume of mid-late Eocene archaoecetes (Order: Cetacea) revealed by computed tomography: Implications for cetacean brain evolution. J Mammal Evol 7:81—94

    Article  Google Scholar 

  • Marino L, Uhen MD, Pyenson ND, Frolich B (2003) Reconstructing cetacean brain evolution using computed tomography. Anat Rec 272B:107—117

    Article  Google Scholar 

  • Marx FG (2010) The more the merrier? A large cladistic analysis of mysticetes, and comments on the transition from teeth to baleen. J Mammal Evol 18:77—10

    Article  Google Scholar 

  • May-Collado L, Agnarsson I (2006) Cytochrome b and Bayesian inference of whale phylogeny. Molec Phylogenetics Evol 38:344—354

    Article  CAS  Google Scholar 

  • McGowen MR, Spaulding M, Gatesy J (2009) Divergence date estimation and a comprehensive molecular tree of extant cetaceans. Mol Phylogen Evol 53:891—906

    Article  CAS  Google Scholar 

  • McGuire JL (2010) Geometric morphometrics of vole (Microtus californicus) dentition as a new paleoclimate proxy: shape change along geographic and climatic clines. Quat Internat 212:198—205

    Article  Google Scholar 

  • Mead JG, Fordyce RE (2009) The therian skull: a lexicon with emphasis on the odontocetes. Smithsonian Contrib Zool 627:1—248

    Article  Google Scholar 

  • Mendoza M, Janis CM, Palmqvist P (2006) Estimating the body mass of extinct ungulates: a study on the use of multiple regression. J Zool 270:90—101

    Google Scholar 

  • Midford PE, Garland T Jr, Maddison W (2006) PDAP: PDTREE package for MESQUITE, version 1.07. Available at mesquiteproject.org/pdap_mesquite/

  • Mihlbachler MC, Solounias N (2006) Coevolution of tooth crown height and diet in oreodonts (Merycoidodontidae, Artiodactyla, Mammalia) examined with phylogenetically independent contrasts. J Mammal Evol 13:11—36

    Article  Google Scholar 

  • Motani R (1997) New technique for retrodeforming tectonically deformed fossils, with an example for ichthyosaurian specimens. Lethaia 30:221—228

    Article  Google Scholar 

  • Nikaido M, Matsuno F, Hamilton H, Brownell RL, Cao Y, Ding W, Zuoyan Z, Shedlock AM, Fordyce RE, Hasegawa M, Okada N (2001) Retroposon analysis of major cetacean lineages: the monophyly of toothed whales and the paraphyly of river dolphins. Proc Natl Acad Sci USA 98: 7384—7389

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki M (1950) The body weight of whales. Sci Rep Whales Res Inst 4:184—209

    Google Scholar 

  • Norris KS (1961) Standardized methods for measuring and recording data on the smaller cetaceans. J Mammal 42:471—476

    Article  Google Scholar 

  • Nowak RM (1999) Walker’s Mammals of the World. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Perrin WF (1975) Variation of spotted and spinner porpoise (genus Stenella) in the eastern Pacific and Hawaii. Bull Scripps Inst Oceanogr 21:1—206

    Google Scholar 

  • Pilleri G, Pilleri O (1989) Balaenoptera siberi, ein neuer balaenopterid (Cetacea) aus der Pisco-Formation Perus I. In: Pilleri G (ed) Beitrage zur Palaeontologie der Cetaceen Perus I. Hirnanatomisches Institut der Universitat Bern Ostermundigen, Bern, pp 63—106

    Google Scholar 

  • Polly PD (2001) Paleontology and the comparative method: ancestral node reconstructions versus observed node values. Am Nat 157:596—609

    Article  PubMed  CAS  Google Scholar 

  • Pyenson ND (2008) Understanding the paleoecology and evolution of cetaceans in the eastern North Pacific Ocean during the Neogene. Unpublished dissertation, University of California, Berkeley, 302 pp

    Google Scholar 

  • Pyenson ND (2009) Requiem for Lipotes: an evolutionary perspective on marine mammal extinction. Mar Mammal Sci 25:714—724

    Article  Google Scholar 

  • Pyenson ND, Haasl DM (2007) Miocene whale-fall demonstrates that host cetacean size did not determine the evolution of whale-fall communities. Biol Lett 3:709—711

    Article  PubMed  Google Scholar 

  • Pyenson ND, Lindberg DR (2003) Phylogenetic analyses of body size in Neoceti: preliminary proxies for studying cetacean ecology in the fossil record. Abstracts for the 15th Biennial Conference on the Biology of Marine Mammals: Greensboro, North Carolina

  • Pyenson ND, Sponberg S (2007) Reconstruction body size in extinct crown Cetacea using allometric scaling, phylogenetic comparative methods, and tests from the fossil record. In: Warren A (ed) Conference on Australiasian Vertebrate Evolution, Palaeontology and Systematics 2007, Geological Society of Australia Abstracts 85:51—52

    Google Scholar 

  • Reynolds PS (2002) How big is a giant? The importance of method in estimating body size of extinct mammals. J Mammal 83:321—332

    Article  Google Scholar 

  • Sarko DK, Domning DP, Marino L, Reep RL (2010) Estimating body size of fossil sirenians. Mar Mammal Sci 26:937—959

    Article  Google Scholar 

  • SAS Institute Incorporated (2007) JMP, Version 7. Cary, North Carolina

    Google Scholar 

  • Sasaki T, Nikaido M, Hamilton H, Goto M, Kato H, Kanda N, Pastene LA, Cao Y, Fordyce RE, Hasegawa M, Okada N (2005) Mitochondrial phylogenetics and the evolution of mysticete whales. Syst Biol 54:77—90

    Article  PubMed  Google Scholar 

  • Sasaki T, Nikaido M, Wada S, Yamada TK, Cao Y, Hasegawa M, Okada N (2006) Balaenoptera omurai is a newly discovered baleen whale that represents an ancient evolutionary lineage. Mol Phylogen Evol 41:40—52

    Article  CAS  Google Scholar 

  • Schaefer W (1972) Ecology and Palaeoecology of Marine Environments. University of Chicago Press, Chicago

    Google Scholar 

  • Scheffer VB (1972) The weight of the Steller sea cow. J Mammal 53:912—914

    Article  Google Scholar 

  • Schluter D, Price T, Mooers AØ, Ludwig D (1997) Likelihood of ancestor states in adaptive radiation. Evolution 51:1699—1711

    Article  Google Scholar 

  • Schmidt-Nielsen K (1984) Scaling: Why is Animal Size so Important? Cambridge University Press, Cambridge

    Google Scholar 

  • Sears KE, Finarelli JA, Flynn JJ, Wyss AR (2008) Estimating body mass in New World “monkeys” (Platyrrhini, Primates) from craniodental measurements, with a consideration of the Miocene platyrrhine, Chilecebus carrascoensis. Am Mus Novitates 3617:1—29

    Article  Google Scholar 

  • Selvin S (1995) Practical Biostatistical Methods. Wadsworth Publishing Company, Belmont

    Google Scholar 

  • Slater GJ, Price SA, Santini F, Alfaro ME (2010) Diversity versus disparity and the radiation of modern cetaceans. Proc Roy Soc B 277:3097—3109

    Article  Google Scholar 

  • Slijper EJ (1962) Whales. Basic Books, New York

    Google Scholar 

  • Smith FA, Boyer AG, Brown JH, Costa DP, Dyan T, Ernest SKM, Evans AR, Fortelius M, Gittleman JL, Hamilton MJ, Harding LE, Lintulaakso K, Lyons SK, Okie JK, Saarinen JJ, Sibly R, Stephens PR, Theodor J, Uhen M (2010) The evolution of maximum body size of terrestrial mammals. Science 330:1216—1219

    Article  PubMed  CAS  Google Scholar 

  • Stanley SM (1973) An explanation for Cope’s rule. Evolution 27:1—26

    Article  Google Scholar 

  • Steeman ME, Hebsgaard MB, Fordyce RE, Ho SYW, Rabosky DL, Nielsen R, Rahbek C, Glenner H, Sorensen MW, Willerslev E (2009) Radiation of extant cetaceans driven by restructuring of the oceans. Syst Biol 58:573—585

    Article  PubMed  Google Scholar 

  • Stuart LJ, Morejohn GV (1980) Developmental patterns in osteology and external morphology in Phocoena phocoena. In: Perrin WF, Myrick AC (eds) Age Determination of Toothed Whales and Sirenians, Special issue 3. International Whaling Commission, Cambridge, pp 133—142

    Google Scholar 

  • Thewissen JGM, Bajpai S (2001) Whale origins as posterchild for macroevolution. BioScience 5:1037—1049

    Article  Google Scholar 

  • Thewissen JGM, Williams EM (2002) The early evolution of Cetacea (whales, dolphins, and porpoises). Annu Rev Ecol Syst 33:73—90

    Article  Google Scholar 

  • Thomason JJ (1997) Functional Morphology in Vertebrate Paleontology. Cambridge University Press, Cambridge

    Google Scholar 

  • Tobias RD (1997) An introduction to partial least squares regression, TS-509, SAS Institute, Cary. Available at http://support.sas.com/techsup/technote/ts509.pdf

  • Trammer J (2005) Maximum body size in a radiating clade as a function of time. Evolution 59:941—947

    PubMed  Google Scholar 

  • Uhen MD (2004) Form, function, and anatomy of Dorudon atrox (Mammalia, Cetacea); an archaeocete from the middle to late Eocene of Egypt. Univ Mich Pap Paleontol 34:1—222

    Google Scholar 

  • Uhen MD, Pyenson ND (2007) Diversity estimates, biases, and historiographic effects: resolving cetacean diversity in the Tertiary. Palaeontol Elect 10:11A:22pp

  • Van Valkenburgh B (1990) Skeletal and dental predictors of body mass in carnivores. In: Damuth J, MacFadden BJ (eds) Body Size in Mammalian Paleobiology. Estimation and Biological Implications. Cambridge University Press, Cambridge, pp 181—205

    Google Scholar 

  • Walsh B, Berta A (2011) Occipital ossification of balaenopteroid mysticetes. Anat Rec 294:391—398

    Article  Google Scholar 

Download references

Acknowledgments

For collections visits and assitance, N. D. P. is most grateful to time and effort of researchers at the following institutions: E. Hoch and staff at the Conservation Department and Gram Museum of Paleontology; D. Long and M. Flannery (CAS); O. Lambert (IRNSB); D. Janiger and J. Dynes (LACM); M. Fornasiero and L. Del Favero (MGPUP); G. Bianucci and C. Sorbini (MSNTUP); C. de Muizon and V. Bouetel (MNHN); C. Conroy and J. Patton (MVZ); R. Sabin, L. Tomsett, and P. Jenkins (NHM); A. van Helden (NMNZ); E. M. G. Fitzgerald (NMV); K. A. Fahy (SBNHM); D. J. Bohaska, C. W. Potter, and J. G. Mead (USNM); and J. Bradley (UWBM). We are also extremely grateful for E. P. J. Heizmann (SMNS), who provided crucial measurements of specimens in Germany. N. D. P. thanks L. G. Barnes and H. Thomas for collections access and assistance at LACM. T. A. Deméré, R. E. Fordyce, J. A. Goldbogen, M. D. Uhen, and J. Velez-Juarbe provided helpful comments, discussions and assistance. We also thank two anonymous reviewers and Editor-in-Chief J. R. Wible for insightful comments that improved the content of this manuscript. This paper represents part of a doctoral dissertation completed by N. D. P. in the Department of Integrative Biology and the Museum of Paleontology at the University of California, Berkeley; input from committee members D. R. Lindberg, A. D. Barnosky, J. H. Lipps, W. Alvarez, and G. J. Vermeij improved the quality of this chapter. C. Nunn, S. Patek, and M. Lahiff also provided valuable support on multivariate comparative methods. Portions of this manuscript were written with funding to N. D. P. from: a National Science Foundation (NSF) Graduate Research Fellowship; a NSF East Asia and Pacific Summer Institutes fellowship, co-sponsored by the Royal Society of New Zealand and the New Zealand Ministry of Science and Technology; the UCMP Remington Kellogg Fund and the Department of Integrative Biology, University of California, Berkeley; a postdoctoral research fellowship from the Natural Sciences and Engineering Research Council of Canada; and from the Smithsonian Institution. Funding for S. N. S. is from the Fannie and John Hertz Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Pyenson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 681 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyenson, N.D., Sponberg, S.N. Reconstructing Body Size in Extinct Crown Cetacea (Neoceti) Using Allometry, Phylogenetic Methods and Tests from the Fossil Record. J Mammal Evol 18, 269–288 (2011). https://doi.org/10.1007/s10914-011-9170-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-011-9170-1

Keywords

Navigation