Skip to main content

Advertisement

Log in

STAT5-Driven Enhancers Tightly Control Temporal Expression of Mammary-Specific Genes

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The de novo formation of milk-secreting mammary epithelium during pregnancy is regulated by prolactin through activation of the transcription factor STAT5, which stimulates the expression of several hundred mammary-specific genes. In addition to its key role in activating gene expression in mammary tissue, STAT5, which is ubiquitously expressed in most cell types, implements T cell-specific programs controlled by interleukins. However, the mechanisms by which STAT5 controls cell-specific genetic programs activated by distinct cytokines remain relatively unknown. Integration of data from genome-wide surveys of chromatin markers and transcription factor binding at regulatory elements may shed light on the mechanisms that drive cell-specific programs. Here, we have illustrated how STAT5 controls cell-specific gene expression through its concentration and an auto-regulatory enhancer supporting its high levels in mammary tissue. The unique genomic features of STAT5-driven enhancers or super-enhancers that regulate mammary-specific genes and their dynamic remodeling in response to pregnancy hormone levels are described. We have further provided biological evidence supporting the in vivo function of a STAT5-driven super-enhancer with the aid of CRISPR/Cas9 genome editing. Finally, we discuss how the functions of mammary-specific super-enhancers are confined by the zinc finger protein, CTCF, to allow exclusive activation of mammary-specific genes without affecting common neighboring genes. This review comprehensively summarizes the molecular pathways underlying differential control of cell-specific gene sets by STAT5 and provides novel insights into STAT5-dependent mammary physiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hennighausen L, Robinson GW. Information networks in the mammary gland. Nat Rev Mol Cell Biol. 2005;6(9):715–25. https://doi.org/10.1038/nrm1714.

    Article  CAS  PubMed  Google Scholar 

  2. Hennighausen L, Robinson GW. Signaling pathways in mammary gland development. Dev Cell. 2001;1(4):467–75.

    Article  CAS  PubMed  Google Scholar 

  3. Bocchinfuso WP, Lindzey JK, Hewitt SC, Clark JA, Myers PH, Cooper R, et al. Induction of mammary gland development in estrogen receptor-alpha knockout mice. Endocrinology. 2000;141(8):2982–94. https://doi.org/10.1210/endo.141.8.7609.

    Article  CAS  PubMed  Google Scholar 

  4. Silberstein GB, Van Horn K, Shyamala G, Daniel CW. Progesterone receptors in the mouse mammary duct: distribution and developmental regulation. Cell Growth Differ. 1996;7(7):945–52.

    CAS  PubMed  Google Scholar 

  5. Naylor MJ, Lockefeer JA, Horseman ND, Ormandy CJ. Prolactin regulates mammary epithelial cell proliferation via autocrine/paracrine mechanism. Endocrine. 2003;20(1–2):111–4. https://doi.org/10.1385/ENDO:20:1-2:111.

    Article  CAS  PubMed  Google Scholar 

  6. Hennighausen L, Robinson GW. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev. 2008;22(6):711–21. https://doi.org/10.1101/gad.1643908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Azam M, Erdjument-Bromage H, Kreider BL, Xia M, Quelle F, Basu R, et al. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J. 1995;14(7):1402–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Robinson GW, Gouilleux F, Groner B, Hennighausen L. Cloning and expression of Stat5 and an additional homologue (Stat5b) involved in prolactin signal transduction in mouse mammary tissue. Proc Natl Acad Sci U S A. 1995;92(19):8831–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mui AL, Wakao H, O'Farrell AM, Harada N, Miyajima A. Interleukin-3, granulocyte-macrophage colony stimulating factor and interleukin-5 transduce signals through two STAT5 homologs. EMBO J. 1995;14(6):1166–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui Y, Riedlinger G, Miyoshi K, Tang W, Li C, Deng CX, et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol Cell Biol. 2004;24(18):8037–47. https://doi.org/10.1128/MCB.24.18.8037-8047.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997;11(2):179–86.

    Article  CAS  PubMed  Google Scholar 

  12. Liu X, Gallego MI, Smith GH, Robinson GW, Hennighausen L. Functional rescue of Stat5a-null mammary tissue through the activation of compensating signals including Stat5b. Cell Growth Differ. 1998;9(9):795–803.

    CAS  PubMed  Google Scholar 

  13. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A. 1997;94(14):7239–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Imada K, Bloom ET, Nakajima H, Horvath-Arcidiacono JA, Udy GB, Davey HW, et al. Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J Exp Med. 1998;188(11):2067–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yao Z, Cui Y, Watford WT, Bream JH, Yamaoka K, Hissong BD, et al. Stat5a/b are essential for normal lymphoid development and differentiation. Proc Natl Acad Sci U S A. 2006;103(4):1000–5. https://doi.org/10.1073/pnas.0507350103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T, et al. Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol. 2001;155(4):531–42. https://doi.org/10.1083/jcb.200107065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yamaji D, Kang K, Robinson GW, Hennighausen L. Sequential activation of genetic programs in mouse mammary epithelium during pregnancy depends on STAT5A/B concentration. Nucleic Acids Res. 2013;41(3):1622–36. https://doi.org/10.1093/nar/gks1310.

    Article  CAS  PubMed  Google Scholar 

  18. Ong CT, Corces VG. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat Rev Genet. 2011;12(4):283–93. https://doi.org/10.1038/nrg2957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ong CT, Corces VG. Enhancers: emerging roles in cell fate specification. EMBO Rep. 2012;13(5):423–30. https://doi.org/10.1038/embor.2012.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shlyueva D, Stampfel G, Stark A. Transcriptional enhancers: from properties to genome-wide predictions. Nat Rev Genet. 2014;15(4):272–86. https://doi.org/10.1038/nrg3682.

    Article  CAS  PubMed  Google Scholar 

  21. Natoli G, Andrau JC. Noncoding transcription at enhancers: general principles and functional models. Annu Rev Genet. 2012;46:1–19. https://doi.org/10.1146/annurev-genet-110711-155459.

    Article  CAS  PubMed  Google Scholar 

  22. Metser G, Shin HY, Wang C, Yoo KH, Oh S, Villarino AV, et al. An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Res. 2016;44(3):1052–63. https://doi.org/10.1093/nar/gkv999.

    Article  CAS  PubMed  Google Scholar 

  23. Shin HY, Willi M, HyunYoo K, Zeng X, Wang C, Metser G, et al. Hierarchy within the mammary STAT5-driven Wap super-enhancer. Nat Genet. 2016;48(8):904–11. https://doi.org/10.1038/ng.3606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng X, Willi M, Shin HY, Hennighausen L, Wang C. Lineage-specific and non-specific cytokine-sensing genes respond differentially to the master regulator STAT5. Cell Rep. 2016;17(12):3333–46. https://doi.org/10.1016/j.celrep.2016.11.079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miyoshi K, Cui Y, Riedlinger G, Robinson P, Lehoczky J, Zon L, et al. Structure of the mouse Stat 3/5 locus: evolution from Drosophila to zebrafish to mouse. Genomics. 2001;71(2):150–5. https://doi.org/10.1006/geno.2000.6433.

    Article  CAS  PubMed  Google Scholar 

  26. Pittius CW, Sankaran L, Topper YJ, Hennighausen L. Comparison of the regulation of the whey acidic protein gene with that of a hybrid gene containing the whey acidic protein gene promoter in transgenic mice. Mol Endocrinol. 1988;2(11):1027–32. https://doi.org/10.1210/mend-2-11-1027.

    Article  CAS  PubMed  Google Scholar 

  27. Robinson GW, Kang K, Yoo KH, Tang Y, Zhu BM, Yamaji D, et al. Coregulation of genetic programs by the transcription factors NFIB and STAT5. Mol Endocrinol. 2014;28(5):758–67. https://doi.org/10.1210/me.2012-1387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou J, Chehab R, Tkalcevic J, Naylor MJ, Harris J, Wilson TJ, et al. Elf5 is essential for early embryogenesis and mammary gland development during pregnancy and lactation. EMBO J. 2005;24(3):635–44. https://doi.org/10.1038/sj.emboj.7600538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hennighausen LG, Sippel AE. Mouse whey acidic protein is a novel member of the family of 'four-disulfide core' proteins. Nucleic Acids Res. 1982;10(8):2677–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harris J, Stanford PM, Sutherland K, Oakes SR, Naylor MJ, Robertson FG, et al. Socs2 and elf5 mediate prolactin-induced mammary gland development. Mol Endocrinol. 2006;20(5):1177–87. https://doi.org/10.1210/me.2005-0473.

    Article  CAS  PubMed  Google Scholar 

  31. Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K, et al. Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev. 1999;13(19):2604–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology. 2002;143(9):3641–50. https://doi.org/10.1210/en.2002-220224.

    Article  CAS  PubMed  Google Scholar 

  33. Zhao L, Melenhorst JJ, Hennighausen L. Loss of interleukin 6 results in delayed mammary gland involution: a possible role for mitogen-activated protein kinase and not signal transducer and activator of transcription 3. Mol Endocrinol. 2002;16(12):2902–12. https://doi.org/10.1210/me.2001-0330.

    Article  CAS  PubMed  Google Scholar 

  34. Willi M, Yoo KH, Wang C, Trajanoski Z, Hennighausen L. Differential cytokine sensitivities of STAT5-dependent enhancers rely on Stat5 autoregulation. Nucleic Acids Res. 2016;44(21):10277–91. https://doi.org/10.1093/nar/gkw844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Baik M, Yu JH, Hennighausen L. Growth hormone-STAT5 regulation of growth, hepatocellular carcinoma, and liver metabolism. Ann N Y Acad Sci. 2011;1229:29–37. https://doi.org/10.1111/j.1749-6632.2011.06100.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, et al. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell. 2013;153(2):307–19. https://doi.org/10.1016/j.cell.2013.03.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, et al. Super-enhancers in the control of cell identity and disease. Cell. 2013;155(4):934–47. https://doi.org/10.1016/j.cell.2013.09.053.

    Article  CAS  PubMed  Google Scholar 

  38. Parker SC, Stitzel ML, Taylor DL, Orozco JM, Erdos MR, Akiyama JA, et al. Chromatin stretch enhancer states drive cell-specific gene regulation and harbor human disease risk variants. Proc Natl Acad Sci U S A. 2013;110(44):17921–6. https://doi.org/10.1073/pnas.1317023110.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Vahedi G, Kanno Y, Furumoto Y, Jiang K, Parker SC, Erdos MR, et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature. 2015;520(7548):558–62. https://doi.org/10.1038/nature14154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adam RC, Yang H, Rockowitz S, Larsen SB, Nikolova M, Oristian DS, et al. Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice. Nature. 2015;521(7552):366–70. https://doi.org/10.1038/nature14289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu CF, Lefebvre V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res. 2015;43(17):8183–203. https://doi.org/10.1093/nar/gkv688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin JW, Wang G. The mediator complex: a master coordinator of transcription and cell lineage development. Development. 2014;141(5):977–87. https://doi.org/10.1242/dev.098392.

    Article  CAS  PubMed  Google Scholar 

  43. Pott S, Lieb JD. What are super-enhancers? Nat Genet. 2015;47(1):8–12. https://doi.org/10.1038/ng.3167.

    Article  CAS  PubMed  Google Scholar 

  44. Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013;31(7):397–405. https://doi.org/10.1016/j.tibtech.2013.04.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li M, Liu X, Robinson G, Bar-Peled U, Wagner KU, Young WS, et al. Mammary-derived signals activate programmed cell death during the first stage of mammary gland involution. Proc Natl Acad Sci U S A. 1997;94(7):3425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Watson CJ, Neoh K. The Stat family of transcription factors have diverse roles in mammary gland development. Semin Cell Dev Biol. 2008;19(4):401–6. https://doi.org/10.1016/j.semcdb.2008.07.021.

    Article  CAS  PubMed  Google Scholar 

  47. Walker SR, Nelson EA, Yeh JE, Pinello L, Yuan GC, Frank DA. STAT5 outcompetes STAT3 to regulate the expression of the oncogenic transcriptional modulator BCL6. Mol Cell Biol. 2013;33(15):2879–90. https://doi.org/10.1128/MCB.01620-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. de Laat W, Duboule D. Topology of mammalian developmental enhancers and their regulatory landscapes. Nature. 2013;502(7472):499–506. https://doi.org/10.1038/nature12753.

    Article  CAS  PubMed  Google Scholar 

  49. Bell AC, West AG, Felsenfeld G. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell. 1999;98(3):387–96.

    Article  CAS  PubMed  Google Scholar 

  50. Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G. CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell. 2004;13(2):291–8.

    Article  CAS  PubMed  Google Scholar 

  51. Gaszner M, Felsenfeld G. Insulators: exploiting transcriptional and epigenetic mechanisms. Nat Rev Genet. 2006;7(9):703–13. https://doi.org/10.1038/nrg1925.

    Article  CAS  PubMed  Google Scholar 

  52. Dowen JM, Fan ZP, Hnisz D, Ren G, Abraham BJ, Zhang LN, et al. Control of cell identity genes occurs in insulated neighborhoods in mammalian chromosomes. Cell. 2014;159(2):374–87. https://doi.org/10.1016/j.cell.2014.09.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, et al. CTCF binding polarity determines chromatin looping. Mol Cell. 2015;60(4):676–84. https://doi.org/10.1016/j.molcel.2015.09.023.

    Article  CAS  PubMed  Google Scholar 

  54. Blinka S, Reimer MH Jr, Pulakanti K, Rao S. Super-enhancers at the Nanog locus differentially regulate neighboring pluripotency-associated genes. Cell Rep. 2016;17(1):19–28. https://doi.org/10.1016/j.celrep.2016.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Narendra V, Rocha PP, An D, Raviram R, Skok JA, Mazzoni EO, et al. CTCF establishes discrete functional chromatin domains at the Hox clusters during differentiation. Science. 2015;347(6225):1017–21. https://doi.org/10.1126/science.1262088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Willi M, Yoo KH, Reinisch F, Kuhns TM, Lee HK, Wang C, et al. Facultative CTCF sites moderate mammary super-enhancer activity and regulate juxtaposed gene in non-mammary cells. Nat Commun. 2017;8:16069. https://doi.org/10.1038/ncomms16069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, et al. Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res. 2017;45(8):4606–18. https://doi.org/10.1093/nar/gkx185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wyszomierski SL, Rosen JM. Cooperative effects of STAT5 (signal transducer and activator of transcription 5) and C/EBPbeta (CCAAT/enhancer-binding protein-beta) on beta-casein gene transcription are mediated by the glucocorticoid receptor. Mol Endocrinol. 2001;15(2):228–40. https://doi.org/10.1210/mend.15.2.0597.

    Article  CAS  PubMed  Google Scholar 

  59. Kabotyanski EB, Huetter M, Xian W, Rijnkels M, Rosen JM. Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers. Mol Endocrinol. 2006;20(10):2355–68. https://doi.org/10.1210/me.2006-0160.

    Article  CAS  PubMed  Google Scholar 

  60. Kabotyanski EB, Rijnkels M, Freeman-Zadrowski C, Buser AC, Edwards DP, Rosen JM. Lactogenic hormonal induction of long distance interactions between beta-casein gene regulatory elements. J Biol Chem. 2009;284(34):22815–24. https://doi.org/10.1074/jbc.M109.032490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Rijnkels M, Kabotyanski E, Shore A, Rosen JM. The chromatin landscape of the casein gene locus. Horm Mol Biol Clin Investig. 2012;10(1):201–5. https://doi.org/10.1515/hmbci-2012-0004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Moriguchi T, Suzuki M, Yu L, Takai J, Ohneda K, Yamamoto M. Progenitor stage-specific activity of a cis-acting double GATA motif for Gata1 gene expression. Mol Cell Biol. 2015;35(5):805–15. https://doi.org/10.1128/MCB.01011-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leddin M, Perrod C, Hoogenkamp M, Ghani S, Assi S, Heinz S, et al. Two distinct auto-regulatory loops operate at the PU.1 locus in B cells and myeloid cells. Blood. 2011;117(10):2827–38. https://doi.org/10.1182/blood-2010-08-302976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ohba S, He X, Hojo H, McMahon AP. Distinct transcriptional programs underlie Sox9 regulation of the mammalian chondrocyte. Cell Rep. 2015;12(2):229–43. https://doi.org/10.1016/j.celrep.2015.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Neville MC, McFadden TB, Forsyth I. Hormonal regulation of mammary differentiation and milk secretion. J Mammary Gland Biol Neoplasia. 2002;7(1):49–66.

    Article  PubMed  Google Scholar 

  66. Robinson GW, McKnight RA, Smith GH, Hennighausen L. Mammary epithelial cells undergo secretory differentiation in cycling virgins but require pregnancy for the establishment of terminal differentiation. Development. 1995;121(7):2079–90.

    CAS  PubMed  Google Scholar 

  67. Bach K, Pensa S, Grzelak M, Hadfield J, Adams DJ, Marioni JC, et al. Differentiation dynamics of mammary epithelial cells revealed by single-cell RNA sequencing. Nat Commun. 2017;8(1):2128. https://doi.org/10.1038/s41467-017-02001-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nguyen QH, Pervolarakis N, Blake K, Ma D, Davis RT, James N, et al. Profiling human breast epithelial cells using single cell RNA sequencing identifies cell diversity. Nat Commun. 2018;9(1):2028. https://doi.org/10.1038/s41467-018-04334-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun H, Miao Z, Zhang X, Chan UI, Su SM, Guo S, et al. Single-cell RNA-Seq reveals cell heterogeneity and hierarchy within mouse mammary epithelia. J Biol Chem. 2018;293(22):8315–29. https://doi.org/10.1074/jbc.RA118.002297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Giraddi RR, Chung CY, Heinz RE, Balcioglu O, Novotny M, Trejo CL, et al. Single-cell transcriptomes distinguish stem cell state changes and lineage specification programs in early mammary gland development. Cell Rep. 2018;24(6):1653–66 e7. https://doi.org/10.1016/j.celrep.2018.07.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (S2017R1C1B2002806, S201803S00103) and the IRP of NIDDK/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Hyun Yoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, H.Y., Hennighausen, L. & Yoo, K.H. STAT5-Driven Enhancers Tightly Control Temporal Expression of Mammary-Specific Genes. J Mammary Gland Biol Neoplasia 24, 61–71 (2019). https://doi.org/10.1007/s10911-018-9418-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9418-y

Keywords

Navigation