Skip to main content

Advertisement

Log in

Intratumoral Heterogeneity in Ductal Carcinoma In Situ: Chaos and Consequence

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Ductal carcinoma in situ (DCIS) is a non-invasive proliferative growth in the breast that serves as a non-obligate precursor to invasive ductal carcinoma. The widespread adoption of screening mammography has led to a steep increase in the detection of DCIS, which now comprises approximately 20% of new breast cancer diagnoses in the United States. Interestingly, the intratumoral heterogeneity (ITH) that has been observed in invasive breast cancers may have been established early in tumorigenesis, given the vast and varied ITH that has been detected in DCIS. This review will discuss the intratumoral heterogeneity of DCIS, focusing on the phenotypic and genomic heterogeneity of tumor cells, as well as the compositional heterogeneity of the tumor microenvironment. In addition, we will assess the spatial heterogeneity that is now being appreciated in these lesions, and summarize new approaches to evaluate heterogeneity of tumor and stromal cells in the context of their spatial organization. Importantly, we will discuss how a growing understanding of ITH has led to a more holistic appreciation of the complex biology of DCIS, specifically its evolution and natural history. Finally, we will consider ways in which our knowledge of DCIS ITH might be translated in the future to guide clinical care for DCIS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wellings SR, Jensen HM. On the origin and progression of ductal carcinoma in the human breast. J Natl Cancer Inst. 1973;50(5):1111–8.

    CAS  Google Scholar 

  2. Lee S, Mohsin SK, Mao S, Hilsenbeck SG, Medina D, Allred DC. Hormones, receptors, and growth in hyperplastic enlarged lobular units: early potential precursors of breast cancer. Breast Cancer Res. 2006;8(1):R6. https://doi.org/10.1186/bcr1367.

    CAS  Google Scholar 

  3. Tavassoli FA. Ductal carcinoma in situ: introduction of the concept of ductal intraepithelial neoplasia. Mod Pathol. 1998;11(2):140–54.

    CAS  Google Scholar 

  4. Vargo-Gogola T, Rosen JM. Modelling breast cancer: one size does not fit all. Nat Rev Cancer. 2007;7(9):659–72.

    CAS  Google Scholar 

  5. Ellis IO. Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Mod Pathol. 2010;23(Suppl 2):S1–7. https://doi.org/10.1038/modpathol.2010.56.

    CAS  Google Scholar 

  6. Lakhani SR, Ellis. I.O., Schnitt, S.J., Tan, P.H., van de Vijver, M.J. WHO Classification of Tumours of the Breast. Lyon: IARC Press2012.

  7. Rakha EA, Reis-Filho JS, Baehner F, Dabbs DJ, Decker T, Eusebi V, et al. Breast cancer prognostic classification in the molecular era: the role of histological grade. Breast Cancer Res. 2010;12(4):207. https://doi.org/10.1186/bcr2607.

    PubMed Central  Google Scholar 

  8. Cowell CF, Weigelt B, Sakr RA, Ng CKY, Hicks J, King TA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol. 2013;7(5):859–69. https://doi.org/10.1016/j.molonc.2013.07.005.

    PubMed Central  Google Scholar 

  9. Allred DC. Ductal carcinoma in situ: terminology, classification, and natural history. J Natl Cancer Inst Monogr. 2010;2010(41):134–8. https://doi.org/10.1093/jncimonographs/lgq035.

    PubMed Central  Google Scholar 

  10. Bombonati A, Sgroi DC. The Molecular Pathology of Breast Cancer Progression. The Journal of pathology. 2011;223(2):307–17. https://doi.org/10.1002/path.2808.

    CAS  Google Scholar 

  11. NCCN. Breast Cancer Clinical Guidelines 2018: National Comprehensive Cancer Network2018.

  12. American Cancer Society I. Breast Cancer Facts & Figures 2017-2018. Atlanta2017.

  13. Allegra CJ, Aberle DR, Ganschow P, Hahn SM, Lee CN, Millon-Underwood S, et al. National Institutes of Health State-of-the-Science Conference statement: Diagnosis and Management of Ductal Carcinoma In Situ September 22-24, 2009. J Natl Cancer Inst. 2010;102(3):161–9. https://doi.org/10.1093/jnci/djp485.

    Google Scholar 

  14. Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol. 1999;187(4):396–402. https://doi.org/10.1002/(sici)1096-9896(199903)187:4<396::aid-path286>3.0.co;2-l.

    CAS  Google Scholar 

  15. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P, et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci U S A. 2003;100(10):5974–9. https://doi.org/10.1073/pnas.0931261100.

    CAS  PubMed Central  Google Scholar 

  16. Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, Goudefroye R, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(7):1956–65. https://doi.org/10.1158/1078-0432.ccr-07-1465.

    CAS  Google Scholar 

  17. Committee TCC. Consensus conference on the classification of ductal carcinoma in situ. Human pathology. 1997;28(11):1221–5.

    Google Scholar 

  18. Leong AS, Sormunen RT, Vinyuvat S, Hamdani RW, Suthipintawong C. Biologic markers in ductal carcinoma in situ and concurrent infiltrating carcinoma. A comparison of eight contemporary grading systems. Am J Clin Pathol. 2001;115(5):709–18. https://doi.org/10.1309/pj7h-a52v-m3xb-v94y.

    CAS  Google Scholar 

  19. Leonard GD, Swain SM. Ductal carcinoma in situ, complexities and challenges. J Natl Cancer Inst. 2004;96(12):906–20.

    Google Scholar 

  20. Pinder SE. Ductal carcinoma in situ (DCIS): pathological features, differential diagnosis, prognostic factors and specimen evaluation. Mod Pathol. 2010;23(Suppl 2):S8–13. https://doi.org/10.1038/modpathol.2010.40.

    Google Scholar 

  21. Pinder SE, Duggan C, Ellis IO, Cuzick J, Forbes JF, Bishop H, et al. A new pathological system for grading DCIS with improved prediction of local recurrence: results from the UKCCCR/ANZ DCIS trial. British journal of cancer. 2010;103(1):94–100. https://doi.org/10.1038/sj.bjc.6605718.

    CAS  PubMed Central  Google Scholar 

  22. Brown JP, Pinder SE. Ductal carcinoma in situ: current morphological and molecular subtypes. Diagnostic Histopathology. 2012;18(3):112–8. https://doi.org/10.1016/j.mpdhp.2012.01.001.

    Google Scholar 

  23. Makki J. Diversity of Breast Carcinoma: Histological Subtypes and Clinical Relevance. Clinical Medicine Insights Pathology. 2015;8:23–31. https://doi.org/10.4137/CPath.S31563.

    PubMed Central  Google Scholar 

  24. Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Frontiers in Oncology. 2017;7:248. https://doi.org/10.3389/fonc.2017.00248.

    PubMed Central  Google Scholar 

  25. Lennington WJ, Jensen RA, Dalton LW, Page DL. Ductal carcinoma in situ of the breast. Heterogeneity of individual lesions. Cancer. 1994;73(1):118–24.

    CAS  Google Scholar 

  26. Quinn CM, Ostrowski JL. Cytological and architectural heterogeneity in ductal carcinoma in situ of the breast. Journal of Clinical Pathology. 1997;50(7):596–9.

    CAS  PubMed Central  Google Scholar 

  27. Allred DC, Wu Y, Mao S, Nagtegaal ID, Lee S, Perou CM, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(2):370–8. https://doi.org/10.1158/1078-0432.CCR-07-1127.

    CAS  Google Scholar 

  28. Perez AA, Balabram D, Salles Mde A, Gobbi H. Ductal carcinoma in situ of the breast: correlation between histopathological features and age of patients. Diagnostic pathology. 2014;9:227. https://doi.org/10.1186/s13000-014-0227-3.

    PubMed Central  Google Scholar 

  29. Scripcaru G, Zardawi IM. Mammary Ductal Carcinoma In Situ: A Fresh Look at Architectural Patterns. International Journal of Surgical Oncology. 2012;2012:979521. https://doi.org/10.1155/2012/979521.

    PubMed Central  Google Scholar 

  30. Bane A. Ductal Carcinoma In Situ: What the Pathologist Needs to Know and Why. International Journal of Breast Cancer. 2013;2013:914053. https://doi.org/10.1155/2013/914053.

    PubMed Central  Google Scholar 

  31. Chapman J-AW, Miller NA, Lickley HLA, Qian J, Christens-Barry WA, Fu Y et al. Ductal carcinoma in situ of the breast (DCIS) with heterogeneity of nuclear grade: prognostic effects of quantitative nuclear assessment. BMC Cancer. 2007;7:174-. doi:10.1186/1471-2407-7-174.

  32. Pape-Zambito D, Jiang Z, Wu H, Devarajan K, Slater CM, Cai KQ, et al. Identifying a highly-aggressive DCIS subgroup by studying intra-individual DCIS heterogeneity among invasive breast cancer patients. PloS one. 2014;9(6):e100488. https://doi.org/10.1371/journal.pone.0100488.

    PubMed Central  Google Scholar 

  33. Lari SA, Kuerer HM. Biological Markers in DCIS and Risk of Breast Recurrence: A Systematic Review. Journal of Cancer. 2011;2:232–61.

    PubMed Central  Google Scholar 

  34. McCarty KS Jr, Miller LS, Cox EB, Konrath J, McCarty KS Sr. Estrogen receptor analyses. Correlation of biochemical and immunohistochemical methods using monoclonal antireceptor antibodies. Archives of pathology & laboratory medicine. 1985;109(8):716–21.

    Google Scholar 

  35. Remmele W, Schicketanz KH. Immunohistochemical determination of estrogen and progesterone receptor content in human breast cancer. Computer-assisted image analysis (QIC score) vs. subjective grading (IRS). Pathol Res Pract. 1993;189(8):862–6. https://doi.org/10.1016/S0344-0338(11)81095-2.

    CAS  Google Scholar 

  36. Allred DC, Harvey JM, Berardo M, Clark GM. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol. 1998;11(2):155–68.

    CAS  Google Scholar 

  37. Smith KL, Robbins PD, Dawkins HJ, Papadimitriou JM, Redmond SL, Carrello S, et al. c-erbB-2 amplification in breast cancer: detection in formalin-fixed, paraffin-embedded tissue by in situ hybridization. Human pathology. 1994;25(4):413–8.

    CAS  Google Scholar 

  38. Latta EK, Tjan S, Parkes RK, O'Malley FP. The role of HER2/neu overexpression/amplification in the progression of ductal carcinoma in situ to invasive carcinoma of the breast. Mod Pathol. 2002;15(12):1318–25. https://doi.org/10.1097/01.mp.0000038462.62634.b1.

    CAS  Google Scholar 

  39. Park K, Han S, Kim HJ, Kim J, Shin E. HER2 status in pure ductal carcinoma in situ and in the intraductal and invasive components of invasive ductal carcinoma determined by fluorescence in situ hybridization and immunohistochemistry. Histopathology. 2006;48(6):702–7. https://doi.org/10.1111/j.1365-2559.2006.02403.x.

    CAS  Google Scholar 

  40. Van Bockstal M, Lambein K, Denys H, Braems G, Nuyts A, Van den Broecke R, et al. Histopathological characterization of ductal carcinoma in situ (DCIS) of the breast according to HER2 amplification status and molecular subtype. Virchows Archiv : an international journal of pathology. 2014;465(3):275–89. https://doi.org/10.1007/s00428-014-1609-3.

    CAS  Google Scholar 

  41. Ringberg A, Anagnostaki L, Anderson H, Idvall I, Ferno M. South Sweden Breast Cancer G. Cell biological factors in ductal carcinoma in situ (DCIS) of the breast-relationship to ipsilateral local recurrence and histopathological characteristics. Eur J Cancer. 2001;37(12):1514–22.

    CAS  Google Scholar 

  42. Lebeau A, Unholzer A, Amann G, Kronawitter M, Bauerfeind I, Sendelhofert A, et al. EGFR, HER-2/neu, cyclin D1, p21 and p53 in correlation to cell proliferation and steroid hormone receptor status in ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2003;79(2):187–98.

    CAS  Google Scholar 

  43. Wilson GR, Cramer A, Welman A, Knox F, Swindell R, Kawakatsu H, et al. Activated c-SRC in ductal carcinoma in situ correlates with high tumour grade, high proliferation and HER2 positivity. British journal of cancer. 2006;95(10):1410–4. https://doi.org/10.1038/sj.bjc.6603444.

    CAS  PubMed Central  Google Scholar 

  44. Kerlikowske K, Molinaro AM, Gauthier ML, Berman HK, Waldman F, Bennington J, et al. Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst. 2010;102(9):627–37. https://doi.org/10.1093/jnci/djq101.

    CAS  PubMed Central  Google Scholar 

  45. Rakovitch E, Nofech-Mozes S, Hanna W, Narod S, Thiruchelvam D, Saskin R, et al. HER2/neu and Ki-67 expression predict non-invasive recurrence following breast-conserving therapy for ductal carcinoma in situ. British journal of cancer. 2012;106(6):1160–5. https://doi.org/10.1038/bjc.2012.41.

    CAS  PubMed Central  Google Scholar 

  46. Buckley N, Boyle D, McArt D, Irwin G, Harkin DP, Lioe T et al. Molecular classification of non-invasive breast lesions for personalised therapy and chemoprevention. Oncotarget. 2015;6(41):43244-54. doi:10.18632/oncotarget.6525.

  47. Williams KE, Barnes NL, Cramer A, Johnson R, Cheema K, Morris J, et al. Molecular phenotypes of DCIS predict overall and invasive recurrence. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO. 2015;26(5):1019–25. https://doi.org/10.1093/annonc/mdv062.

    CAS  Google Scholar 

  48. Poulakaki N, Makris GM, Papanota AM, Marineli F, Marinelis A, Battista MJ et al. Ki-67 Expression as a Factor Predicting Recurrence of Ductal Carcinoma In Situ of the Breast: A Systematic Review and Meta-Analysis. Clinical breast cancer. 2018;18(2):157-67.e6. doi:10.1016/j.clbc.2017.12.007.

  49. Done SJ, Arneson NC, Ozcelik H, Redston M, Andrulis IL. p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. Cancer Res. 1998;58(4):785–9.

    CAS  Google Scholar 

  50. Yemelyanova A, Vang R, Kshirsagar M, Lu D, Marks MA, Shih Ie M, et al. Immunohistochemical staining patterns of p53 can serve as a surrogate marker for TP53 mutations in ovarian carcinoma: an immunohistochemical and nucleotide sequencing analysis. Mod Pathol. 2011;24(9):1248–53. https://doi.org/10.1038/modpathol.2011.85.

    CAS  Google Scholar 

  51. Pang JB, Savas P, Fellowes AP, Mir Arnau G, Kader T, Vedururu R, et al. Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod Pathol. 2017;30(7):952–63. https://doi.org/10.1038/modpathol.2017.21.

    CAS  Google Scholar 

  52. Rajan PB, Scott DJ, Perry RH, Griffith CD. p53 protein expression in ductal carcinoma in situ (DCIS) of the breast. Breast Cancer Res Treat. 1997;42(3):283–90.

    CAS  Google Scholar 

  53. Lukas J, Niu N, Press MF. p53 mutations and expression in breast carcinoma in situ. Am J Pathol. 2000;156(1):183–91. https://doi.org/10.1016/S0002-9440(10)64718-9.

    CAS  PubMed Central  Google Scholar 

  54. Poller DN, Roberts EC, Bell JA, Elston CW, Blamey RW, Ellis IO. p53 protein expression in mammary ductal carcinoma in situ: relationship to immunohistochemical expression of estrogen receptor and c-erbB-2 protein. Human pathology. 1993;24(5):463–8.

    CAS  Google Scholar 

  55. Marchetti A, Buttitta F, Pellegrini S, Campani D, Cecchetti D, Bistocchi M. P53 and C-erbb-2 alterations in in-situ and invasive ductal breast carcinomas - a genetic and immunohistochemical analysis. International journal of oncology. 1995;7(2):343–7.

    CAS  Google Scholar 

  56. Meijnen P, Peterse JL, Antonini N, Rutgers EJT, van de Vijver MJ. Immunohistochemical categorisation of ductal carcinoma in situ of the breast. British journal of cancer. 2008;98(1):137–42. https://doi.org/10.1038/sj.bjc.6604112.

    CAS  Google Scholar 

  57. Gerdes MJ, Gokmen-Polar Y, Sui Y, Pang AS, LaPlante N, Harris AL, et al. Single-cell heterogeneity in ductal carcinoma in situ of breast. Mod Pathol. 2018;31(3):406–17. https://doi.org/10.1038/modpathol.2017.143.

    CAS  Google Scholar 

  58. Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, et al. Promoter CpG island hypermethylation during breast cancer progression. Virchows Archiv : an international journal of pathology. 2011;458(1):73–84. https://doi.org/10.1007/s00428-010-1013-6.

    CAS  Google Scholar 

  59. Johnson KC, Koestler DC, Fleischer T, Chen P, Jenson EG, Marotti JD, et al. DNA methylation in ductal carcinoma in situ related with future development of invasive breast cancer. Clin Epigenetics. 2015;7:75. https://doi.org/10.1186/s13148-015-0094-0.

    CAS  PubMed Central  Google Scholar 

  60. Yoon HJ, Kim Y, Kim BS. Intratumoral metabolic heterogeneity predicts invasive components in breast ductal carcinoma in situ. Eur Radiol. 2015;25(12):3648–58. https://doi.org/10.1007/s00330-015-3761-9.

    Google Scholar 

  61. Kaur H, Mao S, Li Q, Sameni M, Krawetz SA, Sloane BF, et al. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PloS one. 2012;7(12):e50249. https://doi.org/10.1371/journal.pone.0050249.

    CAS  PubMed Central  Google Scholar 

  62. Eswaran J, Horvath A, Godbole S, Reddy SD, Mudvari P, Ohshiro K, et al. RNA sequencing of cancer reveals novel splicing alterations. Sci Rep. 2013;3:1689. https://doi.org/10.1038/srep01689.

    CAS  PubMed Central  Google Scholar 

  63. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, et al. A Molecular Portrait of High-Grade Ductal Carcinoma In Situ. Cancer Res. 2015;75(18):3980–90. https://doi.org/10.1158/0008-5472.CAN-15-0506.

    CAS  PubMed Central  Google Scholar 

  64. Elsarraj HS, Hong Y, Valdez KE, Michaels W, Hook M, Smith WP, et al. Expression profiling of in vivo ductal carcinoma in situ progression models identified B cell lymphoma-9 as a molecular driver of breast cancer invasion. Breast Cancer Res. 2015;17:128. https://doi.org/10.1186/s13058-015-0630-z.

    CAS  PubMed Central  Google Scholar 

  65. Locke WJ, Clark SJ. Epigenome remodelling in breast cancer: insights from an early in vitro model of carcinogenesis. Breast Cancer Res. 2012;14(6):215. https://doi.org/10.1186/bcr3237.

    PubMed Central  Google Scholar 

  66. Moelans CB, de Groot JS, Pan X, van der Wall E, van Diest PJ. Clonal intratumor heterogeneity of promoter hypermethylation in breast cancer by MS-MLPA. Mod Pathol. 2014;27(6):869–74. https://doi.org/10.1038/modpathol.2013.207.

    CAS  Google Scholar 

  67. Zenobi R. Single-cell metabolomics: analytical and biological perspectives. Science. 2013;342(6163):1243259. https://doi.org/10.1126/science.1243259.

    CAS  Google Scholar 

  68. Fessenden M. Metabolomics: Small molecules, single cells. Nature. 2016;540(7631):153–5. https://doi.org/10.1038/540153a.

    CAS  Google Scholar 

  69. Emara S, Amer S, Ali A, Abouleila Y, Oga A, Masujima T. Single-Cell Metabolomics. Adv Exp Med Biol. 2017;965:323–43. https://doi.org/10.1007/978-3-319-47656-8_13.

    CAS  Google Scholar 

  70. Almuhaideb A, Papathanasiou N, Bomanji J. (18)F-FDG PET/CT Imaging In Oncology. Annals of Saudi Medicine. 2011;31(1):3–13. https://doi.org/10.4103/0256-4947.75771.

    PubMed Central  Google Scholar 

  71. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6(5):377–82. https://doi.org/10.1038/nmeth.1315.

    CAS  Google Scholar 

  72. Svensson V, Vento-Tormo R, Teichmann SA. Exponential scaling of single-cell RNA-seq in the past decade. Nat Protoc. 2018;13(4):599–604. https://doi.org/10.1038/nprot.2017.149.

    CAS  Google Scholar 

  73. Nielsen KV, Blichert-Toft M, Andersen J. Chromosome analysis of in situ breast cancer. Acta oncologica (Stockholm, Sweden). 1989;28(6):919-22.

  74. Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG, et al. In situ analyses of genome instability in breast cancer. Nature genetics. 2004;36(9):984–8. https://doi.org/10.1038/ng1409.

    CAS  Google Scholar 

  75. Afghahi A, Forgo E, Mitani AA, Desai M, Varma S, Seto T, et al. Chromosomal copy number alterations for associations of ductal carcinoma in situ with invasive breast cancer. Breast Cancer Res. 2015;17:108. https://doi.org/10.1186/s13058-015-0623-y.

    CAS  PubMed Central  Google Scholar 

  76. Visscher DW, Wallis TL, Crissman JD. Evaluation of chromosome aneuploidy in tissue sections of preinvasive breast carcinomas using interphase cytogenetics. Cancer. 1996;77(2):315–20. https://doi.org/10.1002/(sici)1097-0142(19960115)77:2<315::aid-cncr14>3.0.co;2-4.

    CAS  Google Scholar 

  77. Murphy DS, Hoare SF, Going JJ, Mallon EE, George WD, Kaye SB, et al. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. J Natl Cancer Inst. 1995;87(22):1694–704.

    CAS  Google Scholar 

  78. Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY, et al. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10(10):3317–26. https://doi.org/10.1158/1078-0432.ccr-0984-03.

    CAS  Google Scholar 

  79. Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A, Ortiz-Melendez C, Lee WJ, Christensen R, et al. Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Am J Pathol. 2012;181(5):1807–22. https://doi.org/10.1016/j.ajpath.2012.07.012.

    CAS  PubMed Central  Google Scholar 

  80. Jang M, Kim E, Choi Y, Lee H, Kim Y, Kim J, et al. FGFR1 is amplified during the progression of in situ to invasive breast carcinoma. Breast Cancer Res. 2012;14(4):R115. https://doi.org/10.1186/bcr3239.

    CAS  PubMed Central  Google Scholar 

  81. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258(5083):818–21.

    CAS  Google Scholar 

  82. James LA, Mitchell EL, Menasce L, Varley JM. Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene. 1997;14(9):1059–65. https://doi.org/10.1038/sj.onc.1200923.

    CAS  Google Scholar 

  83. Iakovlev VV, Arneson NC, Wong V, Wang C, Leung S, Iakovleva G, et al. Genomic differences between pure ductal carcinoma in situ of the breast and that associated with invasive disease: a calibrated aCGH study. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008;14(14):4446–54. https://doi.org/10.1158/1078-0432.ccr-07-4960.

    CAS  Google Scholar 

  84. Stratton MR, Collins N, Lakhani SR, Sloane JP. Loss of heterozygosity in ductal carcinoma in situ of the breast. J Pathol. 1995;175(2):195–201. https://doi.org/10.1002/path.1711750207.

    CAS  Google Scholar 

  85. Pan A, Zhou Y, Mu K, Liu Y, Sun F, Li P, et al. Detection of gene copy number alterations in DCIS and invasive breast cancer by QM-FISH. Am J Transl Res. 2016;8(11):4994–5004.

    CAS  PubMed Central  Google Scholar 

  86. Fischer A, Vazquez-Garcia I, Illingworth CJR, Mustonen V. High-definition reconstruction of clonal composition in cancer. Cell Rep. 2014;7(5):1740–52. https://doi.org/10.1016/j.celrep.2014.04.055.

    CAS  PubMed Central  Google Scholar 

  87. Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol. 2014;10(8):e1003665. https://doi.org/10.1371/journal.pcbi.1003665.

    CAS  PubMed Central  Google Scholar 

  88. Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, et al. PyClone: statistical inference of clonal population structure in cancer. Nat Methods. 2014;11(4):396–8. https://doi.org/10.1038/nmeth.2883.

    CAS  PubMed Central  Google Scholar 

  89. Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, Markowetz F. Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput Biol. 2014;10(4):e1003535. https://doi.org/10.1371/journal.pcbi.1003535.

    CAS  PubMed Central  Google Scholar 

  90. Gupta RG, Somer RA. Intratumor Heterogeneity: Novel Approaches for Resolving Genomic Architecture and Clonal Evolution. Mol Cancer Res. 2017;15(9):1127–37. https://doi.org/10.1158/1541-7786.MCR-17-0070.

    CAS  Google Scholar 

  91. Ortega MA, Poirion O, Zhu X, Huang S, Wolfgruber TK, Sebra R, et al. Using single-cell multiple omics approaches to resolve tumor heterogeneity. Clinical and translational medicine. 2017;6(1):46. https://doi.org/10.1186/s40169-017-0177-y.

    PubMed Central  Google Scholar 

  92. Schwartz R, Schaffer AA. The evolution of tumour phylogenetics: principles and practice. Nat Rev Genet. 2017;18(4):213–29. https://doi.org/10.1038/nrg.2016.170.

    CAS  PubMed Central  Google Scholar 

  93. Niida A, Nagayama S, Miyano S, Mimori K. Understanding intratumor heterogeneity by combining genome analysis and mathematical modeling. Cancer Sci. 2018;109(4):884–92. https://doi.org/10.1111/cas.13510.

    CAS  PubMed Central  Google Scholar 

  94. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J, Endesfelder D, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England journal of medicine. 2012;366(10):883–92. https://doi.org/10.1056/NEJMoa1113205.

    CAS  PubMed Central  Google Scholar 

  95. Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nature genetics. 2014;46(3):225–33. https://doi.org/10.1038/ng.2891.

    CAS  PubMed Central  Google Scholar 

  96. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, et al. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science. 2014;346(6206):256–9. https://doi.org/10.1126/science.1256930.

    CAS  PubMed Central  Google Scholar 

  97. Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G, Van Loo P, et al. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat Med. 2015;21(7):751–9. https://doi.org/10.1038/nm.3886.

    CAS  PubMed Central  Google Scholar 

  98. El-Kebir M, Satas G, Oesper L, Raphael BJ. Inferring the Mutational History of a Tumor Using Multi-state Perfect Phylogeny Mixtures. Cell Syst. 2016;3(1):43–53. https://doi.org/10.1016/j.cels.2016.07.004.

    CAS  Google Scholar 

  99. Rasche L, Chavan SS, Stephens OW, Patel PH, Tytarenko R, Ashby C, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nature communications. 2017;8(1):268. https://doi.org/10.1038/s41467-017-00296-y.

    CAS  PubMed Central  Google Scholar 

  100. Foschini MP, Morandi L, Leonardi E, Flamminio F, Ishikawa Y, Masetti R, et al. Genetic clonal mapping of in situ and invasive ductal carcinoma indicates the field cancerization phenomenon in the breast. Human pathology. 2013;44(7):1310–9. https://doi.org/10.1016/j.humpath.2012.09.022.

    CAS  Google Scholar 

  101. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing. Cell. 2018;172(1-2):205–17 e12. https://doi.org/10.1016/j.cell.2017.12.007.

    CAS  PubMed Central  Google Scholar 

  102. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal. 1948;27(3):379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.

    Google Scholar 

  103. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

    CAS  Google Scholar 

  104. Greaves M. Nothing in cancer makes sense except. BMC Biol. 2018;16(1):22. https://doi.org/10.1186/s12915-018-0493-8.

    PubMed Central  Google Scholar 

  105. Lloyd MC, Cunningham JJ, Bui MM, Gillies RJ, Brown JS, Gatenby RA. Darwinian Dynamics of Intratumoral Heterogeneity: Not Solely Random Mutations but Also Variable Environmental Selection Forces. Cancer Res. 2016;76(11):3136–44. https://doi.org/10.1158/0008-5472.can-15-2962.

    CAS  PubMed Central  Google Scholar 

  106. Sameni M, Cavallo-Medved D, Franco OE, Chalasani A, Ji K, Aggarwal N, et al. Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Res. 2017;19(1):56. https://doi.org/10.1186/s13058-017-0847-0.

    CAS  PubMed Central  Google Scholar 

  107. Place AE, Jin Huh S, Polyak K. The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Res. 2011;13(6):227. https://doi.org/10.1186/bcr2912.

    CAS  PubMed Central  Google Scholar 

  108. Pienta KJ, McGregor N, Axelrod R, Axelrod DE. Ecological therapy for cancer: defining tumors using an ecosystem paradigm suggests new opportunities for novel cancer treatments. Translational oncology. 2008;1(4):158–64.

    PubMed Central  Google Scholar 

  109. Kim IS, Zhang XH. One microenvironment does not fit all: heterogeneity beyond cancer cells. Cancer Metastasis Rev. 2016;35(4):601–29. https://doi.org/10.1007/s10555-016-9643-z.

    CAS  PubMed Central  Google Scholar 

  110. Hui L, Chen Y. Tumor microenvironment: Sanctuary of the devil. Cancer Lett. 2015;368(1):7–13. https://doi.org/10.1016/j.canlet.2015.07.039.

    CAS  Google Scholar 

  111. Wang M, Zhao J, Zhang L, Wei F, Lian Y, Wu Y, et al. Role of tumor microenvironment in tumorigenesis. J Cancer. 2017;8(5):761–73. https://doi.org/10.7150/jca.17648.

    CAS  PubMed Central  Google Scholar 

  112. Balkwill FR, Capasso M, Hagemann T. The tumor microenvironment at a glance. Journal of cell science. 2012;125(Pt 23):5591–6. https://doi.org/10.1242/jcs.116392.

    CAS  Google Scholar 

  113. Chen F, Zhuang X, Lin L, Yu P, Wang Y, Shi Y, et al. New horizons in tumor microenvironment biology: challenges and opportunities. BMC medicine. 2015;13:45. https://doi.org/10.1186/s12916-015-0278-7.

    CAS  PubMed Central  Google Scholar 

  114. McAllister SS, Weinberg RA. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature cell biology. 2014;16(8):717–27. https://doi.org/10.1038/ncb3015.

    CAS  PubMed Central  Google Scholar 

  115. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nature medicine. 2013;19(11):1423–37. https://doi.org/10.1038/nm.3394.

    CAS  PubMed Central  Google Scholar 

  116. Polyak K, Haviv I, Campbell IG. Co-evolution of tumor cells and their microenvironment. Trends in genetics : TIG. 2009;25(1):30–8. https://doi.org/10.1016/j.tig.2008.10.012.

    CAS  Google Scholar 

  117. Marusyk A, Tabassum DP, Altrock PM, Almendro V, Michor F, Polyak K. Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature. 2014;514(7520):54–8. https://doi.org/10.1038/nature13556.

    CAS  PubMed Central  Google Scholar 

  118. Greaves M. Evolutionary determinants of cancer. Cancer Discov. 2015;5(8):806–20. https://doi.org/10.1158/2159-8290.cd-15-0439.

    CAS  PubMed Central  Google Scholar 

  119. Takahashi K, Ehata S, Koinuma D, Morishita Y, Soda M, Mano H, et al. Pancreatic tumor microenvironment confers highly malignant properties on pancreatic cancer cells. Oncogene. 2018; https://doi.org/10.1038/s41388-018-0144-0.

  120. Naeem S, Duffy JE, Zavaleta E. The functions of biological diversity in an age of extinction. Science. 2012;336(6087):1401–6. https://doi.org/10.1126/science.1215855.

    CAS  Google Scholar 

  121. Ives AR, Carpenter SR. Stability and diversity of ecosystems. Science. 2007;317(5834):58–62. https://doi.org/10.1126/science.1133258.

    CAS  Google Scholar 

  122. Harrison PA, Berry PM, Simpson G, Haslett JR, Blicharska M, Bucur M, et al. Linkages between biodiversity attributes and ecosystem services: A systematic review. Ecosystem Services. 2014;9:191–203. https://doi.org/10.1016/j.ecoser.2014.05.006.

    Google Scholar 

  123. Tilman D, Isbell F, Cowles JM. Biodiversity and Ecosystem Functioning. Annual Review of Ecology, Evolution, and Systematics. 2014;45(1):471–93. https://doi.org/10.1146/annurev-ecolsys-120213-091917.

    Google Scholar 

  124. de Vos MGJ, Zagorski M, McNally A, Bollenbach T. Interaction networks, ecological stability, and collective antibiotic tolerance in polymicrobial infections. Proc Natl Acad Sci U S A. 2017;114(40):10666–71. https://doi.org/10.1073/pnas.1713372114.

    CAS  PubMed Central  Google Scholar 

  125. Calcagno V, Jarne P, Loreau M, Mouquet N, David P. Diversity spurs diversification in ecological communities. Nature communications. 2017;8:15810. https://doi.org/10.1038/ncomms15810.

    PubMed Central  Google Scholar 

  126. Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell. 2010;141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014.

    CAS  PubMed Central  Google Scholar 

  127. Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A, Drier Y, et al. Punctuated evolution of prostate cancer genomes. Cell. 2013;153(3):666–77. https://doi.org/10.1016/j.cell.2013.03.021.

    CAS  PubMed Central  Google Scholar 

  128. Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP, Zhao J, et al. A Big Bang model of human colorectal tumor growth. Nature genetics. 2015;47(3):209–16. https://doi.org/10.1038/ng.3214.

    CAS  PubMed Central  Google Scholar 

  129. Gao R, Davis A, McDonald TO, Sei E, Shi X, Wang Y, et al. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nature genetics. 2016;48(10):1119–30. https://doi.org/10.1038/ng.3641.

    CAS  PubMed Central  Google Scholar 

  130. Jimenez-Sanchez A, Memon D, Pourpe S, Veeraraghavan H, Li Y, Vargas HA et al. Heterogeneous Tumor-Immune Microenvironments among Differentially Growing Metastases in an Ovarian Cancer Patient. Cell. 2017;170(5):927-38.e20. doi:10.1016/j.cell.2017.07.025.

  131. Heindl A, Lan C, Rodrigues DN, Koelble K, Yuan Y. Similarity and diversity of the tumor microenvironment in multiple metastases: critical implications for overall and progression-free survival of high-grade serous ovarian cancer. Oncotarget. 2016;7(44):71123-35. doi:10.18632/oncotarget.12106.

  132. Condeelis J, Pollard JW. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell. 2006;124(2):263–6. https://doi.org/10.1016/j.cell.2006.01.007.

    CAS  Google Scholar 

  133. Wells DK, Chuang Y, Knapp LM, Brockmann D, Kath WL, Leonard JN. Spatial and functional heterogeneities shape collective behavior of tumor-immune networks. PLoS Comput Biol. 2015;11(4):e1004181. https://doi.org/10.1371/journal.pcbi.1004181.

    CAS  PubMed Central  Google Scholar 

  134. Natrajan R, Sailem H, Mardakheh FK, Arias Garcia M, Tape CJ, Dowsett M, et al. Microenvironmental Heterogeneity Parallels Breast Cancer Progression: A Histology–Genomic Integration Analysis. PLOS Medicine. 2016;13(2):e1001961. https://doi.org/10.1371/journal.pmed.1001961.

    PubMed Central  Google Scholar 

  135. Carmona-Fontaine C, Deforet M, Akkari L, Thompson CB, Joyce JA, Xavier JB. Metabolic origins of spatial organization in the tumor microenvironment. Proc Natl Acad Sci U S A. 2017;114(11):2934–9. https://doi.org/10.1073/pnas.1700600114.

    CAS  PubMed Central  Google Scholar 

  136. Campbell MJ, Baehner F, O'Meara T, Ojukwu E, Han B, Mukhtar R, et al. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2017;161(1):17–28. https://doi.org/10.1007/s10549-016-4036-0.

    CAS  Google Scholar 

  137. Lyons YA, Wu SY, Overwijk WW, Baggerly KA, Sood AK. Immune cell profiling in cancer: molecular approaches to cell-specific identification. npj Precision Oncology. 2017;1(1):26. doi:10.1038/s41698-017-0031-0.

  138. Behbod F, Xian W, Shaw CA, Hilsenbeck SG, Tsimelzon A, Rosen JM. Transcriptional profiling of mammary gland side population cells. Stem cells (Dayton, Ohio). 2006;24(4):1065-74. doi:10.1634/stemcells.2005-0375.

  139. Kendrick H, Regan JL, Magnay FA, Grigoriadis A, Mitsopoulos C, Zvelebil M, et al. Transcriptome analysis of mammary epithelial subpopulations identifies novel determinants of lineage commitment and cell fate. BMC Genomics. 2008;9:591. https://doi.org/10.1186/1471-2164-9-591.

    CAS  PubMed Central  Google Scholar 

  140. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, et al. Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell. 2008;3(1):109–18. https://doi.org/10.1016/j.stem.2008.05.018.

    CAS  Google Scholar 

  141. Lim E, Wu D, Pal B, Bouras T, Asselin-Labat ML, Vaillant F, et al. Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways. Breast Cancer Res. 2010;12(2):R21. https://doi.org/10.1186/bcr2560.

    CAS  PubMed Central  Google Scholar 

  142. Shehata M, Teschendorff A, Sharp G, Novcic N, Russell IA, Avril S, et al. Phenotypic and functional characterisation of the luminal cell hierarchy of the mammary gland. Breast Cancer Res. 2012;14(5):R134. https://doi.org/10.1186/bcr3334.

    CAS  PubMed Central  Google Scholar 

  143. dos Santos CO, Rebbeck C, Rozhkova E, Valentine A, Samuels A, Kadiri LR, et al. Molecular hierarchy of mammary differentiation yields refined markers of mammary stem cells. Proc Natl Acad Sci U S A. 2013;110(18):7123–30. https://doi.org/10.1073/pnas.1303919110.

    PubMed Central  Google Scholar 

  144. Russell TD, Jindal S, Agunbiade S, Gao D, Troxell M, Borges VF, et al. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression. Am J Pathol. 2015;185(11):3076–89. https://doi.org/10.1016/j.ajpath.2015.07.004.

    CAS  PubMed Central  Google Scholar 

  145. Pal B, Chen Y, Vaillant F, Jamieson P, Gordon L, Rios AC, et al. Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling. Nature communications. 2017;8(1):1627. https://doi.org/10.1038/s41467-017-01560-x.

    CAS  PubMed Central  Google Scholar 

  146. Stack EC, Wang C, Roman KA, Hoyt CC. Multiplexed immunohistochemistry, imaging, and quantitation: a review, with an assessment of Tyramide signal amplification, multispectral imaging and multiplex analysis. Methods. 2014;70(1):46–58. https://doi.org/10.1016/j.ymeth.2014.08.016.

    CAS  Google Scholar 

  147. Carstens JL. Correa de Sampaio P, Yang D, Barua S, Wang H. Rao A et al. Spatial computation of intratumoral T cells correlates with survival of patients with pancreatic cancer. Nature communications. 2017;8:15095. https://doi.org/10.1038/ncomms15095.

    Google Scholar 

  148. Parra ER, Uraoka N, Jiang M, Cook P, Gibbons D, Forget M-A, et al. Validation of multiplex immunofluorescence panels using multispectral microscopy for immune-profiling of formalin-fixed and paraffin-embedded human tumor tissues. Scientific Reports. 2017;7(1):13380. https://doi.org/10.1038/s41598-017-13942-8.

    CAS  PubMed Central  Google Scholar 

  149. Chang Q, Ornatsky OI, Siddiqui I, Loboda A, Baranov VI, Hedley DW. Imaging Mass Cytometry. Cytometry Part A : the journal of the International Society for Analytical Cytology. 2017;91(2):160–9. https://doi.org/10.1002/cyto.a.23053.

    Google Scholar 

  150. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Meth. 2014;11(4):417–22. https://doi.org/10.1038/nmeth.2869.

    CAS  Google Scholar 

  151. Angelo M, Bendall SC, Finck R, Hale MB, Hitzman C, Borowsky AD, et al. Multiplexed ion beam imaging of human breast tumors. Nat Med. 2014;20(4):436–42. https://doi.org/10.1038/nm.3488.

    CAS  PubMed Central  Google Scholar 

  152. Schapiro D, Jackson HW, Raghuraman S, Fischer JR, Zanotelli VRT, Schulz D et al. histoCAT: analysis of cell phenotypes and interactions in multiplex image cytometry data. Nat Meth. 2017;advance online publication. doi:10.1038/nmeth.4391. http://www.nature.com/nmeth/journal/vaop/ncurrent/abs/nmeth.4391.html#supplementary-information.

  153. Noguchi S, Motomura K, Inaji H, Imaoka S, Koyama H. Clonal analysis of human breast cancer by means of the polymerase chain reaction. Cancer Res. 1992;52(23):6594–7.

    CAS  Google Scholar 

  154. Ince TA, Richardson AL, Bell GW, Saitoh M, Godar S, Karnoub AE, et al. Transformation of different human breast epithelial cell types leads to distinct tumor phenotypes. Cancer Cell. 2007;12(2):160–70. https://doi.org/10.1016/j.ccr.2007.06.013.

    CAS  Google Scholar 

  155. Visvader JE. Cells of origin in cancer. Nature. 2011;469(7330):314–22. https://doi.org/10.1038/nature09781.

    CAS  Google Scholar 

  156. Zhang M, Lee AV, Rosen JM. The Cellular Origin and Evolution of Breast Cancer. Cold Spring Harb Perspect Med. 2017;7(3). doi:10.1101/cshperspect.a027128.

  157. Teixeira MR, Pandis N, Bardi G, Andersen JA, Mandahl N, Mitelman F, et al. Cytogenetic analysis of multifocal breast carcinomas: detection of karyotypically unrelated clones as well as clonal similarities between tumour foci. British journal of cancer. 1994;70(5):922–7.

    CAS  PubMed Central  Google Scholar 

  158. Garcia SB, Novelli M, Wright NA. The clonal origin and clonal evolution of epithelial tumours. Int J Exp Pathol. 2000;81(2):89–116.

    CAS  PubMed Central  Google Scholar 

  159. Shibata A, Tsai YC, Press MF, Henderson BE, Jones PA, Ross RK. Clonal analysis of bilateral breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 1996;2(4):743–8.

    CAS  Google Scholar 

  160. Trujillo KA, Hines WC, Vargas KM, Jones AC, Joste NE, Bisoffi M, et al. Breast field cancerization: isolation and comparison of telomerase-expressing cells in tumor and tumor adjacent, histologically normal breast tissue. Mol Cancer Res. 2011;9(9):1209–21. https://doi.org/10.1158/1541-7786.MCR-10-0424.

    CAS  PubMed Central  Google Scholar 

  161. Polyak K. Breast cancer: origins and evolution. The Journal of clinical investigation. 2007;117(11):3155–63. https://doi.org/10.1172/jci33295.

    CAS  PubMed Central  Google Scholar 

  162. Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell. 2014;14(3):275–91. https://doi.org/10.1016/j.stem.2014.02.006.

    CAS  Google Scholar 

  163. Skibinski A, Kuperwasser C. The origin of breast tumor heterogeneity. Oncogene. 2015;34(42):5309–16. https://doi.org/10.1038/onc.2014.475.

    CAS  PubMed Central  Google Scholar 

  164. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12(2):133–43. https://doi.org/10.1038/nrc3184.

    CAS  Google Scholar 

  165. Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012;481(7381):306–13. https://doi.org/10.1038/nature10762.

    CAS  PubMed Central  Google Scholar 

  166. Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434(7035):864–70. https://doi.org/10.1038/nature03482.

    CAS  Google Scholar 

  167. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8. https://doi.org/10.1073/pnas.0530291100.

    CAS  PubMed Central  Google Scholar 

  168. Lampejo OT, Barnes DM, Smith P, Millis RR. Evaluation of infiltrating ductal carcinomas with a DCIS component: correlation of the histologic type of the in situ component with grade of the infiltrating component. Semin Diagn Pathol. 1994;11(3):215–22.

    CAS  Google Scholar 

  169. Fujii H, Marsh C, Cairns P, Sidransky D, Gabrielson E. Genetic divergence in the clonal evolution of breast cancer. Cancer Res. 1996;56(7):1493–7.

    CAS  Google Scholar 

  170. Gupta SK, Douglas-Jones AG, Fenn N, Morgan JM, Mansel RE. The clinical behavior of breast carcinoma is probably determined at the preinvasive stage (ductal carcinoma in situ). Cancer. 1997;80(9):1740–5.

    CAS  Google Scholar 

  171. Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003;1(5):362–75.

    CAS  Google Scholar 

  172. Reis-Filho JS, Lakhani SR. The diagnosis and management of pre-invasive breast disease: genetic alterations in pre-invasive lesions. Breast Cancer Res. 2003;5(6):313–9. https://doi.org/10.1186/bcr650.

    CAS  PubMed Central  Google Scholar 

  173. Hwang ES, DeVries S, Chew KL, Moore DH 2nd, Kerlikowske K, Thor A, et al. Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clinical cancer research : an official journal of the American Association for Cancer Research. 2004;10(15):5160–7. https://doi.org/10.1158/1078-0432.CCR-04-0165.

    CAS  Google Scholar 

  174. Yao J, Weremowicz S, Feng B, Gentleman RC, Marks JR, Gelman R, et al. Combined cDNA array comparative genomic hybridization and serial analysis of gene expression analysis of breast tumor progression. Cancer Res. 2006;66(8):4065–78. https://doi.org/10.1158/0008-5472.CAN-05-4083.

    CAS  Google Scholar 

  175. Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of In Situ to Invasive Breast Carcinoma Transition. Cancer cell. 2008;13(5):394–406. https://doi.org/10.1016/j.ccr.2008.03.007.

    CAS  PubMed Central  Google Scholar 

  176. Gao Y, Niu Y, Wang X, Wei L, Lu S. Genetic changes at specific stages of breast cancer progression detected by comparative genomic hybridization. Journal of molecular medicine (Berlin, Germany). 2009;87(2):145-52. doi:10.1007/s00109-008-0408-1.

  177. Moelans CB, de Weger RA, Monsuur HN, Maes AH, van Diest PJ. Molecular differences between ductal carcinoma in situ and adjacent invasive breast carcinoma: a multiplex ligation-dependent probe amplification study. Analytical cellular pathology (Amsterdam). 2010;33(3):165–73. https://doi.org/10.3233/acp-clo-2010-0546.

    CAS  PubMed Central  Google Scholar 

  178. Johnson CE, Gorringe KL, Thompson ER, Opeskin K, Boyle SE, Wang Y, et al. Identification of copy number alterations associated with the progression of DCIS to invasive ductal carcinoma. Breast Cancer Res Treat. 2012;133(3):889–98. https://doi.org/10.1007/s10549-011-1835-1.

    CAS  Google Scholar 

  179. Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, et al. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res. 2012;72(17):4574–86. https://doi.org/10.1158/0008-5472.CAN-12-0636.

    CAS  PubMed Central  Google Scholar 

  180. Liao S, Desouki MM, Gaile DP, Shepherd L, Nowak NJ, Conroy J, et al. Differential copy number aberrations in novel candidate genes associated with progression from in situ to invasive ductal carcinoma of the breast. Genes Chromosomes Cancer. 2012;51(12):1067–78. https://doi.org/10.1002/gcc.21991.

    CAS  PubMed Central  Google Scholar 

  181. Rohilla M, Bal A, Singh G, Joshi K. Prediction of heterogeneity in breast cancer immunophenotype at ductal carcinoma in situ stage? Journal of cancer research and therapeutics. 2016;12(4):1249–56. https://doi.org/10.4103/0973-1482.199541.

    Google Scholar 

  182. Espina V, Mariani BD, Gallagher RI, Tran K, Banks S, Wiedemann J, et al. Malignant Precursor Cells Pre-Exist in Human Breast DCIS and Require Autophagy for Survival. PloS one. 2010;5(4):e10240. https://doi.org/10.1371/journal.pone.0010240.

    CAS  PubMed Central  Google Scholar 

  183. Kim SY, Jung SH, Kim MS, Baek IP, Lee SH, Kim TM et al. Genomic differences between pure ductal carcinoma in situ and synchronous ductal carcinoma in situ with invasive breast cancer. Oncotarget. 2015;6(10):7597-607. doi:10.18632/oncotarget.3162.

  184. Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci U S A. 1992;89(19):9064–8.

    CAS  PubMed Central  Google Scholar 

  185. Weaver VM, Petersen OW, Wang F, Larabell CA, Briand P, Damsky C, et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol. 1997;137(1):231–45.

    CAS  PubMed Central  Google Scholar 

  186. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6(1):17–32. https://doi.org/10.1016/j.ccr.2004.06.010.

    CAS  Google Scholar 

  187. Bissell MJ, Kenny PA, Radisky DC. Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: the role of extracellular matrix and its degrading enzymes. Cold Spring Harbor symposia on quantitative biology. 2005;70:343–56. https://doi.org/10.1101/sqb.2005.70.013.

    CAS  PubMed Central  Google Scholar 

  188. Allen MD, Thomas GJ, Clark S, Dawoud MM, Vallath S, Payne SJ, et al. Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clinical cancer research : an official journal of the American Association for Cancer Research. 2014;20(2):344–57. https://doi.org/10.1158/1078-0432.ccr-13-1504.

    CAS  Google Scholar 

  189. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune Escape in Breast Cancer During In Situ to Invasive Carcinoma Transition. Cancer Discov. 2017;7(10):1098–115. https://doi.org/10.1158/2159-8290.cd-17-0222.

    CAS  PubMed Central  Google Scholar 

  190. Miroshnikova YA, Rozenberg GI, Cassereau L, Pickup M, Mouw JK, Ou G, et al. alpha5beta1-Integrin promotes tension-dependent mammary epithelial cell invasion by engaging the fibronectin synergy site. Molecular biology of the cell. 2017;28(22):2958–77. https://doi.org/10.1091/mbc.E17-02-0126.

    CAS  PubMed Central  Google Scholar 

  191. Allott EH, Geradts J, Sun X, Cohen SM, Zirpoli GR, Khoury T, et al. Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification. Breast Cancer Research. 2016;18(1):68. https://doi.org/10.1186/s13058-016-0725-1.

    CAS  Google Scholar 

  192. Elmore JG, Longton GM, Carney PA, Geller BM, Onega T, Tosteson AN, et al. Diagnostic concordance among pathologists interpreting breast biopsy specimens. Jama. 2015;313(11):1122–32. https://doi.org/10.1001/jama.2015.1405.

    CAS  PubMed Central  Google Scholar 

  193. Elmore JG, Nelson HD, Pepe MS, et al. Variability in pathologists' interpretations of individual breast biopsy slides: A population perspective. Annals of Internal Medicine. 2016;164(10):649–55. https://doi.org/10.7326/M15-0964.

    PubMed Central  Google Scholar 

  194. Leonard G. Discordant interpretations of breast biopsy specimens by pathologists. Jama. 2015;314(1):82–3. https://doi.org/10.1001/jama.2015.6224.

    CAS  Google Scholar 

  195. Dillon MF, McDermott EW, Quinn CM, O'Doherty A, O'Higgins N, Hill AD. Predictors of invasive disease in breast cancer when core biopsy demonstrates DCIS only. Journal of surgical oncology. 2006;93(7):559–63. https://doi.org/10.1002/jso.20445.

    Google Scholar 

  196. Brennan ME, Turner RM, Ciatto S, Marinovich ML, French JR, Macaskill P, et al. Ductal carcinoma in situ at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer. Radiology. 2011;260(1):119–28. https://doi.org/10.1148/radiol.11102368.

    Google Scholar 

  197. Sim YT, Litherland J, Lindsay E, Hendry P, Brauer K, Dobson H, et al. Upgrade of ductal carcinoma in situ on core biopsies to invasive disease at final surgery: a retrospective review across the Scottish Breast Screening Programme. Clinical radiology. 2015;70(5):502–6. https://doi.org/10.1016/j.crad.2014.12.019.

    CAS  Google Scholar 

  198. Shi B, Grimm LJ, Mazurowski MA, Baker JA, Marks JR, King LM et al. Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ Using Deep Learning Features. Journal of the American College of Radiology : JACR. 2018;15(3 Pt B):527-34. doi:10.1016/j.jacr.2017.11.036.

  199. Seol H, Lee HJ, Choi Y, Lee HE, Kim YJ, Kim JH, et al. Intratumoral heterogeneity of HER2 gene amplification in breast cancer: its clinicopathological significance. Mod Pathol. 2012;25(7):938–48. https://doi.org/10.1038/modpathol.2012.36.

    CAS  Google Scholar 

  200. Song H, Kim TO, Ma SY, Park JH, Choi JH, Kim JH, et al. Intratumoral heterogeneity impacts the response to anti-neu antibody therapy. BMC Cancer. 2014;14:647. https://doi.org/10.1186/1471-2407-14-647.

    CAS  PubMed Central  Google Scholar 

  201. Ng CK, Martelotto LG, Gauthier A, Wen HC, Piscuoglio S, Lim RS, et al. Intra-tumor genetic heterogeneity and alternative driver genetic alterations in breast cancers with heterogeneous HER2 gene amplification. Genome biology. 2015;16:107. https://doi.org/10.1186/s13059-015-0657-6.

    CAS  PubMed Central  Google Scholar 

  202. Chung YR, Kim HJ, Kim YA, Chang MS, Hwang KT, Park SY. Diversity index as a novel prognostic factor in breast cancer. Oncotarget. 2017;8(57):97114-26. https://doi.org/10.18632/oncotarget.21371.

  203. Park SY, Gonen M, Kim HJ, Michor F, Polyak K. Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. The Journal of clinical investigation. 2010;120(2):636–44. https://doi.org/10.1172/jci40724.

    CAS  PubMed Central  Google Scholar 

  204. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68. https://doi.org/10.1016/j.ccr.2007.12.003.

    CAS  Google Scholar 

  205. Hosseini H, Obradovic MM, Hoffmann M, Harper KL, Sosa MS, Werner-Klein M, et al. Early dissemination seeds metastasis in breast cancer. Nature. 2016; https://doi.org/10.1038/nature20785.

  206. Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nature communications. 2018;9(1):21. https://doi.org/10.1038/s41467-017-02481-5.

    CAS  PubMed Central  Google Scholar 

  207. Narod SA, Sopik V. Is invasion a necessary step for metastases in breast cancer? Breast Cancer Res Treat. 2018;169(1):9–23. https://doi.org/10.1007/s10549-017-4644-3.

    PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Drs. Fariba Behbod and Jason I. Herschkowitz for editorial support, as well as Drs. Amanda L. Rinkenbaugh and Abena B. Redwood for critical evaluation and proof reading of this article. This work was supported by the Stand Up To Cancer Laura Ziskin Prize (to HPW) and by the Department of Defense through the Breast Cancer Research Program under Award No. W81XWH-17-1-0077 (to VCS).

Funding

This work was supported by the Stand Up To Cancer Laura Ziskin Prize (to HPW) and by the Department of Defense through the Breast Cancer Research Program under Award No. W81XWH-17-1-0077 (to VCS). Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Piwnica-Worms.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, V.C., Piwnica-Worms, H. Intratumoral Heterogeneity in Ductal Carcinoma In Situ: Chaos and Consequence. J Mammary Gland Biol Neoplasia 23, 191–205 (2018). https://doi.org/10.1007/s10911-018-9410-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9410-6

Keywords

Navigation