Skip to main content

Advertisement

Log in

Breaking through to the Other Side: Microenvironment Contributions to DCIS Initiation and Progression

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Refinements in early detection, surgical and radiation therapy, and hormone receptor-targeted treatments have improved the survival rates for breast cancer patients. However, the ability to reliably identify which non-invasive lesions and localized tumors have the ability to progress and/or metastasize remains a major unmet need in the field. The current diagnostic and therapeutic strategies focus on intrinsic alterations within carcinoma cells that are closely associated with proliferation. However, substantial accumulating evidence has indicated that permissive changes in the stromal tissues surrounding the carcinoma play an integral role in breast cancer tumor initiation and progression. Numerous studies have suggested that the stromal environment surrounding ductal carcinoma in situ (DCIS) lesions actively contributes to enhancing tumor cell invasion and immune escape. This review will describe the current state of knowledge regarding the mechanisms through which the microenvironment interacts with DCIS lesions focusing on recent studies that describe the contributions of myoepithelial cells, fibroblasts and immune cells to invasion and subsequent progression. These mechanisms will be considered in the context of developing biomarkers for identifying lesions that will progress to invasive carcinoma and/or developing approaches for therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J. Clin. 2015;65(1):5–29. https://doi.org/10.3322/caac.21254.

    Article  PubMed  Google Scholar 

  2. Lester SC, Bose S, Chen YY, Connolly JL, de Baca ME, Fitzgibbons PL, et al. Protocol for the examination of specimens from patients with ductal carcinoma in situ of the breast. Arch. Pathol. Lab. Med. 2009;133(1):15–25. https://doi.org/10.1043/1543-2165-133.1.15.

    Article  PubMed  Google Scholar 

  3. Silverstein MJ, Poller DN, Waisman JR, Colburn WJ, Barth A, Gierson ED, et al. Prognostic classification of breast ductal carcinoma-in-situ. Lancet. 1995;345(8958):1154–7. https://doi.org/10.1016/S0140-6736(95)90982-6.

    Article  CAS  PubMed  Google Scholar 

  4. Rakha EA, Miligy IM, Gorringe KL, Toss MS, Green AR, Fox SB, et al. Invasion in breast lesions: the role of the epithelial-stroma barrier. Histopathology. 2017;72:1075–83. https://doi.org/10.1111/his.13446.

    Article  Google Scholar 

  5. Network NCC. Breast Cancer (Version 1.2018). In: https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. 2018. http://mdanderson.libanswers.com/faq/26180. Accessed May 5, 2018, DOI: https://doi.org/10.7196/samj.9438.

  6. Gorringe KL, Fox SB. Ductal carcinoma in situ biology, biomarkers, and diagnosis. Front. Oncol. 2017;7:248. https://doi.org/10.3389/fonc.2017.00248.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Solin LJ, Gray R, Baehner FL, Butler SM, Hughes LL, Yoshizawa C, et al. A multigene expression assay to predict local recurrence risk for ductal carcinoma in situ of the breast. J. Natl. Cancer Inst. 2013;105(10):701–10. https://doi.org/10.1093/jnci/djt067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Abba MC, Gong T, Lu Y, Lee J, Zhong Y, Lacunza E, et al. A molecular portrait of high-grade ductal carcinoma in situ. Cancer Res. 2015;75(18):3980–90. https://doi.org/10.1158/0008-5472.CAN-15-0506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pang JB, Savas P, Fellowes AP, Mir Arnau G, Kader T, Vedururu R, et al. Breast ductal carcinoma in situ carry mutational driver events representative of invasive breast cancer. Mod. Pathol. 2017;30(7):952–63. https://doi.org/10.1038/modpathol.2017.21.

    Article  CAS  PubMed  Google Scholar 

  10. Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA, et al. Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol. Oncol. 2013;7(5):859–69. https://doi.org/10.1016/j.molonc.2013.07.005.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Corzo C, Corominas JM, Tusquets I, Salido M, Bellet M, Fabregat X, et al. The MYC oncogene in breast cancer progression: from benign epithelium to invasive carcinoma. Cancer Genet. Cytogenet. 2006;165(2):151–6. https://doi.org/10.1016/j.cancergencyto.2005.08.013.

    Article  CAS  PubMed  Google Scholar 

  12. Heselmeyer-Haddad K, Berroa Garcia LY, Bradley A, Ortiz-Melendez C, Lee WJ, Christensen R, et al. Single-cell genetic analysis of ductal carcinoma in situ and invasive breast cancer reveals enormous tumor heterogeneity yet conserved genomic imbalances and gain of MYC during progression. Am. J. Pathol. 2012;181(5):1807–22. https://doi.org/10.1016/j.ajpath.2012.07.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8. https://doi.org/10.1126/science.959840.

    Article  CAS  PubMed  Google Scholar 

  14. Casasent AK, Schalck A, Gao R, Sei E, Long A, Pangburn W, et al. Multiclonal invasion in breast tumors identified by topographic single cell sequencing. Cell. 2018;172(1–2):205–17 e12. https://doi.org/10.1016/j.cell.2017.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Carraro DM, Elias EV, Andrade VP. Ductal carcinoma in situ of the breast: morphological and molecular features implicated in progression. Biosci. Rep. 2014;34(1) https://doi.org/10.1042/BSR20130077.

  16. Koukoulis GK, Howeedy AA, Korhonen M, Virtanen I, Gould VE. Distribution of tenascin, cellular fibronectins and integrins in the normal, hyperplastic and neoplastic breast. J. Submicrosc. Cytol. Pathol. 1993;25(2):285–95.

    CAS  PubMed  Google Scholar 

  17. Lazard D, Sastre X, Frid MG, Glukhova MA, Thiery JP, Koteliansky VE. Expression of smooth muscle-specific proteins in myoepithelium and stromal myofibroblasts of normal and malignant human breast tissue. Proc. Natl. Acad. Sci. U. S. A. 1993;90(3):999–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gudjonsson T, Adriance MC, Sternlicht MD, Petersen OW, Bissell MJ. Myoepithelial cells: their origin and function in breast morphogenesis and neoplasia. J. Mammary Gland Biol. Neoplasia. 2005;10(3):261–72. https://doi.org/10.1007/s10911-005-9586-4.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Polyak K, Kalluri R. The role of the microenvironment in mammary gland development and cancer. Cold Spring Harb. Perspect. Biol. 2010;2(11):a003244. https://doi.org/10.1101/cshperspect.a003244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gudjonsson T, Ronnov-Jessen L, Villadsen R, Rank F, Bissell MJ, Petersen OW. Normal and tumor-derived myoepithelial cells differ in their ability to interact with luminal breast epithelial cells for polarity and basement membrane deposition. J. Cell Sci. 2002;115(Pt 1):39–50.

    CAS  PubMed  Google Scholar 

  21. Adriance MC, Inman JL, Petersen OW, Bissell MJ. Myoepithelial cells: good fences make good neighbors. Breast Cancer Res. 2005;7(5):190–7. https://doi.org/10.1186/bcr1286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Radice GL, Ferreira-Cornwell MC, Robinson SD, Rayburn H, Chodosh LA, Takeichi M, et al. Precocious mammary gland development in P-cadherin-deficient mice. J. Cell Biol. 1997;139(4):1025–32. https://doi.org/10.1083/jcb.139.4.1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA. The importance of being a myoepithelial cell. Breast Cancer Res. 2002;4(6):224–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Haaksma CJ, Schwartz RJ, Tomasek JJ. Myoepithelial cell contraction and milk ejection are impaired in mammary glands of mice lacking smooth muscle alpha-actin. Biol. Reprod. 2011;85(1):13–21. https://doi.org/10.1095/biolreprod.110.090639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sopel M. The myoepithelial cell: its role in normal mammary glands and breast cancer. Folia Morphol. (Warsz). 2010;69(1):1–14.

    CAS  Google Scholar 

  26. Valdez KE, Fan F, Smith W, Allred DC, Medina D, Behbod F. Human primary ductal carcinoma in situ (DCIS) subtype-specific pathology is preserved in a mouse intraductal (MIND) xenograft model. J. Pathol. 2011;225(4):565–73. https://doi.org/10.1002/path.2969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Russell TD, Jindal S, Agunbiade S, Gao D, Troxell M, Borges VF, et al. Myoepithelial cell differentiation markers in ductal carcinoma in situ progression. Am. J. Pathol. 2015;185(11):3076–89. https://doi.org/10.1016/j.ajpath.2015.07.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aguiar FN, Cirqueira CS, Bacchi CE, Carvalho FM. Morphologic, molecular and microenvironment factors associated with stromal invasion in breast ductal carcinoma in situ: role of myoepithelial cells. Breast Dis. 2015;35(4):249–52. https://doi.org/10.3233/BD-150416.

    Article  CAS  PubMed  Google Scholar 

  29. Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH. The human myoepithelial cell is a natural tumor suppressor. Clin. Cancer Res. 1997;3(11):1949–58.

    CAS  PubMed  Google Scholar 

  30. Pandey PR, Saidou J, Watabe K. Role of myoepithelial cells in breast tumor progression. Front Biosci (Landmark Ed). 2010;15:226–36. https://doi.org/10.2741/3617.

    Article  CAS  Google Scholar 

  31. Sameni M, Cavallo-Medved D, Franco OE, Chalasani A, Ji K, Aggarwal N, et al. Pathomimetic avatars reveal divergent roles of microenvironment in invasive transition of ductal carcinoma in situ. Breast Cancer Res. 2017;19(1):56. https://doi.org/10.1186/s13058-017-0847-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Duivenvoorden HM, Rautela J, Edgington-Mitchell LE, Spurling A, Greening DW, Nowell CJ, et al. Myoepithelial cell-specific expression of stefin a as a suppressor of early breast cancer invasion. J. Pathol. 2017;243(4):496–509. https://doi.org/10.1002/path.4990.

    Article  CAS  PubMed  Google Scholar 

  33. Jones JL, Shaw JA, Pringle JH, Walker RA. Primary breast myoepithelial cells exert an invasion-suppressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J. Pathol. 2003;201(4):562–72. https://doi.org/10.1002/path.1483.

    Article  CAS  PubMed  Google Scholar 

  34. Sarper M, Allen MD, Gomm J, Haywood L, Decock J, Thirkettle S, et al. Loss of MMP-8 in ductal carcinoma in situ (DCIS)-associated myoepithelial cells contributes to tumour promotion through altered adhesive and proteolytic function. Breast Cancer Res. 2017;19(1):33. https://doi.org/10.1186/s13058-017-0822-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Barsky SH, Karlin NJ. Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J. Mammary Gland Biol. Neoplasia. 2005;10(3):249–60. https://doi.org/10.1007/s10911-005-9585-5.

    Article  PubMed  Google Scholar 

  36. Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML, et al. The human myoepithelial cell displays a multifaceted anti-angiogenic phenotype. Oncogene. 2000;19(31):3449–59. https://doi.org/10.1038/sj.onc.1203677.

    Article  CAS  PubMed  Google Scholar 

  37. Law RH, Irving JA, Buckle AM, Ruzyla K, Buzza M, Bashtannyk-Puhalovich TA, et al. The high resolution crystal structure of the human tumor suppressor maspin reveals a novel conformational switch in the G-helix. J. Biol. Chem. 2005;280(23):22356–64. https://doi.org/10.1074/jbc.M412043200.

    Article  CAS  PubMed  Google Scholar 

  38. Rohilla M, Bal A, Singh G, Joshi K. Phenotypic and functional characterization of ductal carcinoma in situ-associated myoepithelial cells. Clin Breast Cancer. 2015;15(5):335–42. https://doi.org/10.1016/j.clbc.2015.01.004.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang M, Volpert O, Shi YH, Bouck N. Maspin is an angiogenesis inhibitor. Nat. Med. 2000;6(2):196–9. https://doi.org/10.1038/72303.

    Article  CAS  PubMed  Google Scholar 

  40. Streuli CH. Maspin is a tumour suppressor that inhibits breast cancer tumour metastasis in vivo. Breast Cancer Res. 2002;4(4):137–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shao ZM, Nguyen M, Alpaugh ML, O'Connell JT, Barsky SH. The human myoepithelial cell exerts antiproliferative effects on breast carcinoma cells characterized by p21WAF1/CIP1 induction, G2/M arrest, and apoptosis. Exp. Cell Res. 1998;241(2):394–403. https://doi.org/10.1006/excr.1998.4066.

    Article  CAS  PubMed  Google Scholar 

  42. Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med. 2012;2(5):a006627. https://doi.org/10.1101/cshperspect.a006627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6(1):17–32. https://doi.org/10.1016/j.ccr.2004.06.010.

    Article  CAS  PubMed  Google Scholar 

  44. Guo F, Wang Y, Liu J, Mok SC, Xue F, Zhang W. CXCL12/CXCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 2016;35(7):816–26. https://doi.org/10.1038/onc.2015.139.

    Article  CAS  PubMed  Google Scholar 

  45. Allen MD, Thomas GJ, Clark S, Dawoud MM, Vallath S, Payne SJ, et al. Altered microenvironment promotes progression of preinvasive breast cancer: myoepithelial expression of alphavbeta6 integrin in DCIS identifies high-risk patients and predicts recurrence. Clin. Cancer Res. 2014;20(2):344–57. https://doi.org/10.1158/1078-0432.CCR-13-1504.

    Article  CAS  PubMed  Google Scholar 

  46. Lo PK, Zhang Y, Yao Y, Wolfson B, Yu J, Han SY, et al. Tumor-associated myoepithelial cells promote the invasive progression of ductal carcinoma in situ through activation of TGFbeta signaling. J. Biol. Chem. 2017;292(27):11466–84. https://doi.org/10.1074/jbc.M117.775080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Szynglarewicz B, Kasprzak P, Donizy P, Biecek P, Halon A, Matkowski R. Epithelial-mesenchymal transition inducer Snail1 and invasive potential of intraductal breast cancer. J. Surg. Oncol. 2017;116(6):696–705. https://doi.org/10.1002/jso.24708.

    Article  CAS  PubMed  Google Scholar 

  48. Haslam SZ. Mammary fibroblast influence on normal mouse mammary epithelial cell responses to estrogen in vitro. Cancer Res. 1986;46(1):310–6.

    CAS  PubMed  Google Scholar 

  49. Kuperwasser C, Chavarria T, Wu M, Magrane G, Gray JW, Carey L, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc. Natl. Acad. Sci. U. S. A. 2004;101(14):4966–71. https://doi.org/10.1073/pnas.0401064101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Makarem M, Kannan N, Nguyen LV, Knapp DJ, Balani S, Prater MD, et al. Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells. PLoS Biol. 2013;11(8):e1001630. https://doi.org/10.1371/journal.pbio.1001630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Inman JL, Robertson C, Mott JD, Bissell MJ. Mammary gland development: cell fate specification, stem cells and the microenvironment. Development. 2015;142(6):1028–42. https://doi.org/10.1242/dev.087643.

    Article  CAS  PubMed  Google Scholar 

  52. Luhr I, Friedl A, Overath T, Tholey A, Kunze T, Hilpert F, et al. Mammary fibroblasts regulate morphogenesis of normal and tumorigenic breast epithelial cells by mechanical and paracrine signals. Cancer Lett. 2012;325(2):175–88. https://doi.org/10.1016/j.canlet.2012.06.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 2007;8(3):221–33. https://doi.org/10.1038/nrm2125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Simian M, Hirai Y, Navre M, Werb Z, Lochter A, Bissell MJ. The interplay of matrix metalloproteinases, morphogens and growth factors is necessary for branching of mammary epithelial cells. Development. 2001;128(16):3117–31.

    CAS  PubMed  Google Scholar 

  55. Wiseman BS, Sternlicht MD, Lund LR, Alexander CM, Mott J, Bissell MJ, et al. Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J. Cell Biol. 2003;162(6):1123–33. https://doi.org/10.1083/jcb.200302090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kalluri R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 2016;16(9):582–98. https://doi.org/10.1038/nrc.2016.73.

    Article  CAS  PubMed  Google Scholar 

  57. Erdogan B, Webb DJ. Cancer-associated fibroblasts modulate growth factor signaling and extracellular matrix remodeling to regulate tumor metastasis. Biochem. Soc. Trans. 2017;45(1):229–36. https://doi.org/10.1042/BST20160387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev. 2016;30(9):1002–19. https://doi.org/10.1101/gad.279737.116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liao Z, Tan ZW, Zhu P, Tan NS. Cancer-associated fibroblasts in tumor microenvironment - accomplices in tumor malignancy. Cell. Immunol. 2018; https://doi.org/10.1016/j.cellimm.2017.12.003.

  60. Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodeling. Proteomics. 2018;18(5–6):e1700167. https://doi.org/10.1002/pmic.201700167.

    Article  CAS  PubMed  Google Scholar 

  61. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Polyak K. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc. Natl. Acad. Sci. U. S. A. 2009;106(9):3372–7. https://doi.org/10.1073/pnas.0813306106.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sung KE, Yang N, Pehlke C, Keely PJ, Eliceiri KW, Friedl A, et al. Transition to invasion in breast cancer: a microfluidic in vitro model enables examination of spatial and temporal effects. Integr Biol (Camb). 2011;3(4):439–50. https://doi.org/10.1039/c0ib00063a.

    Article  CAS  Google Scholar 

  63. Osuala KO, Sameni M, Shah S, Aggarwal N, Simonait ML, Franco OE, et al. Il-6 signaling between ductal carcinoma in situ cells and carcinoma-associated fibroblasts mediates tumor cell growth and migration. BMC Cancer. 2015;15:584. https://doi.org/10.1186/s12885-015-1576-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bernard S, Myers M, Fang WB, Zinda B, Smart C, Lambert D, et al. CXCL1 derived from mammary fibroblasts promotes progression of mammary lesions to invasive carcinoma through CXCR2 dependent mechanisms. J. Mammary Gland Biol. Neoplasia. 2018; https://doi.org/10.1007/s10911-018-9407-1.

  65. Nielsen BS, Rank F, Illemann M, Lund LR, Dano K. Stromal cells associated with early invasive foci in human mammary ductal carcinoma in situ coexpress urokinase and urokinase receptor. Int. J. Cancer. 2007;120(10):2086–95. https://doi.org/10.1002/ijc.22340.

    Article  CAS  PubMed  Google Scholar 

  66. Morgan MM, Livingston MK, Warrick JW, Stanek EM, Alarid ET, Beebe DJ, et al. Mammary fibroblasts reduce apoptosis and speed estrogen-induced hyperplasia in an organotypic MCF7-derived duct model. Sci. Rep. 2018;8(1):7139. https://doi.org/10.1038/s41598-018-25461-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Brechbuhl HM, Finlay-Schultz J, Yamamoto TM, Gillen AE, Cittelly DM, Tan AC, et al. Fibroblast subtypes regulate responsiveness of luminal breast Cancer to estrogen. Clin. Cancer Res. 2017;23(7):1710–21. https://doi.org/10.1158/1078-0432.CCR-15-2851.

    Article  CAS  PubMed  Google Scholar 

  68. Provenzano PP, Eliceiri KW, Campbell JM, Inman DR, White JG, Keely PJ. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 2006;4(1):38. https://doi.org/10.1186/1741-7015-4-38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Conklin MW, Gangnon RE, Sprague BL, Van Gemert L, Hampton JM, Eliceiri KW, et al. Collagen alignment as a predictor of recurrence after ductal carcinoma in situ. Cancer Epidemiol. Biomark. Prev. 2018;27(2):138–45. https://doi.org/10.1158/1055-9965.EPI-17-0720.

    Article  CAS  Google Scholar 

  70. Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.

    CAS  PubMed  Google Scholar 

  71. Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev. Dyn. 2006;235(12):3222–9. https://doi.org/10.1002/dvdy.20972.

    Article  CAS  PubMed  Google Scholar 

  72. Hodson LJ, Chua AC, Evdokiou A, Robertson SA, Ingman WV. Macrophage phenotype in the mammary gland fluctuates over the course of the estrous cycle and is regulated by ovarian steroid hormones. Biol. Reprod. 2013;89(3):65. https://doi.org/10.1095/biolreprod.113.109561.

    Article  CAS  PubMed  Google Scholar 

  73. O'Brien J, Martinson H, Durand-Rougely C, Schedin P. Macrophages are crucial for epithelial cell death and adipocyte repopulation during mammary gland involution. Development. 2012;139(2):269–75. https://doi.org/10.1242/dev.071696.

    Article  CAS  PubMed  Google Scholar 

  74. Plaks V, Boldajipour B, Linnemann JR, Nguyen NH, Kersten K, Wolf Y, et al. Adaptive immune regulation of mammary postnatal organogenesis. Dev. Cell. 2015;34(5):493–504. https://doi.org/10.1016/j.devcel.2015.07.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ, et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 2003;163(5):2113–26. https://doi.org/10.1016/S0002-9440(10)63568-7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. DeNardo DG, Barreto JB, Andreu P, Vasquez L, Tawfik D, Kolhatkar N, et al. CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell. 2009;16(2):91–102. https://doi.org/10.1016/j.ccr.2009.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Lin EY, Nguyen AV, Russell RG, Pollard JW. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 2001;193(6):727–40. https://doi.org/10.1084/jem.193.6.727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Boyle ST, Faulkner JW, McColl SR, Kochetkova M. The chemokine receptor CCR6 facilitates the onset of mammary neoplasia in the MMTV-PyMT mouse model via recruitment of tumor-promoting macrophages. Mol. Cancer. 2015;14:115. https://doi.org/10.1186/s12943-015-0394-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc. Natl. Acad. Sci. U. S. A. 2012;109(8):2796–801. https://doi.org/10.1073/pnas.1104303108.

    Article  PubMed  Google Scholar 

  80. Rumney RMH, Coffelt SB, Neale TA, Dhayade S, Tozer GM, Miller G. PyMT-Maclow: a novel, inducible, murine model for determining the role of CD68 positive cells in breast tumor development. PLoS One. 2017;12(12):e0188591. https://doi.org/10.1371/journal.pone.0188591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Schwertfeger KL, Xian W, Kaplan AM, Burnett SH, Cohen DA, Rosen JM. A critical role for the inflammatory response in a mouse model of preneoplastic progression. Cancer Res. 2006;66(11):5676–85. https://doi.org/10.1158/0008-5472.CAN-05-3781.

    Article  CAS  PubMed  Google Scholar 

  82. Bohrer LR, Schwertfeger KL. Macrophages promote fibroblast growth factor receptor-driven tumor cell migration and invasion in a CXCR2-dependent manner. Mol. Cancer Res. 2012;10(10):1294–305. https://doi.org/10.1158/1541-7786.MCR-12-0275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carron EC, Homra S, Rosenberg J, Coffelt SB, Kittrell F, Zhang Y et al. Macrophages promote the progression of premalignant mammary lesions to invasive cancer. Oncotarget. 2017;8(31):50731–46. doi:https://doi.org/10.18632/oncotarget.14913.

  84. Linde N, Casanova-Acebes M, Sosa MS, Mortha A, Rahman A, Farias E, et al. Macrophages orchestrate breast cancer early dissemination and metastasis. Nat. Commun. 2018;9(1):21. https://doi.org/10.1038/s41467-017-02481-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Moraes LA, Kar S, Foo SL, Gu T, Toh YQ, Ampomah PB, et al. Annexin-A1 enhances breast cancer growth and migration by promoting alternative macrophage polarization in the tumour microenvironment. Sci. Rep. 2017;7(1):17925. https://doi.org/10.1038/s41598-017-17622-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Ruffell B, Chang-Strachan D, Chan V, Rosenbusch A, Ho CM, Pryer N, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells. Cancer Cell. 2014;26(5):623–37. https://doi.org/10.1016/j.ccell.2014.09.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Vallerand D, Massonnet G, Kebir F, Gentien D, Maciorowski Z, De la Grange P, et al. Characterization of breast Cancer preclinical models reveals a specific pattern of macrophage polarization. PLoS One. 2016;11(7):e0157670. https://doi.org/10.1371/journal.pone.0157670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gil Del Alcazar CR, Huh SJ, Ekram MB, Trinh A, Liu LL, Beca F, et al. Immune escape in breast Cancer during in situ to invasive carcinoma transition. Cancer Discov. 2017;7(10):1098–115. https://doi.org/10.1158/2159-8290.CD-17-0222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Denkert C, von Minckwitz G, Darb-Esfahani S, Lederer B, Heppner BI, Weber KE, et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018;19(1):40–50. https://doi.org/10.1016/S1470-2045(17)30904-X.

    Article  PubMed  Google Scholar 

  90. Hendry S, Pang JB, Byrne DJ, Lakhani SR, Cummings MC, Campbell IG, et al. Relationship of the breast ductal carcinoma in situ immune microenvironment with Clinicopathological and genetic features. Clin. Cancer Res. 2017;23(17):5210–7. https://doi.org/10.1158/1078-0432.CCR-17-0743.

    Article  CAS  PubMed  Google Scholar 

  91. Disis ML, Park KH. Immunomodulation of breast cancer via tumor antigen specific Th1. Cancer Res. Treat. 2009;41(3):117–21. https://doi.org/10.4143/crt.2009.41.3.117.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. 2013;14(10):1014–22. https://doi.org/10.1038/ni.2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Thompson E, Taube JM, Elwood H, Sharma R, Meeker A, Warzecha HN, et al. The immune microenvironment of breast ductal carcinoma in situ. Mod. Pathol. 2016;29(3):249–58. https://doi.org/10.1038/modpathol.2015.158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Campbell MJ, Baehner F, O'Meara T, Ojukwu E, Han B, Mukhtar R, et al. Characterizing the immune microenvironment in high-risk ductal carcinoma in situ of the breast. Breast Cancer Res. Treat. 2017;161(1):17–28. https://doi.org/10.1007/s10549-016-4036-0.

    Article  CAS  PubMed  Google Scholar 

  95. Granot Z, Henke E, Comen EA, King TA, Norton L, Benezra R. Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell. 2011;20(3):300–14. https://doi.org/10.1016/j.ccr.2011.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Uribe-Querol E, Rosales C. Neutrophils in Cancer: two sides of the same coin. J Immunol Res. 2015;2015:983698–21. https://doi.org/10.1155/2015/983698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Buldakov M, Zavyalova M, Krakhmal N, Telegina N, Vtorushin S, Mitrofanova I, et al. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology. 2017;222(1):31–8. https://doi.org/10.1016/j.imbio.2015.09.011.

    Article  CAS  PubMed  Google Scholar 

  98. Johnston RJ, Comps-Agrar L, Hackney J, Yu X, Huseni M, Yang Y, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell. 2014;26(6):923–37. https://doi.org/10.1016/j.ccell.2014.10.018.

    Article  CAS  PubMed  Google Scholar 

  99. Lowenfeld L, Mick R, Datta J, Xu S, Fitzpatrick E, Fisher CS, et al. Dendritic cell vaccination enhances immune responses and induces regression of HER2(pos) DCIS independent of route: results of randomized selection design trial. Clin. Cancer Res. 2017;23(12):2961–71. https://doi.org/10.1158/1078-0432.CCR-16-1924.

    Article  CAS  PubMed  Google Scholar 

  100. Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P. Breast Cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol. 2015;1(7):888–96. https://doi.org/10.1001/jamaoncol.2015.2510.

    Article  PubMed  Google Scholar 

  101. Martinez-Perez C, Turnbull AK, Ekatah GE, Arthur LM, Sims AH, Thomas JS, et al. Current treatment trends and the need for better predictive tools in the management of ductal carcinoma in situ of the breast. Cancer Treat. Rev. 2017;55:163–72. https://doi.org/10.1016/j.ctrv.2017.03.009.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Dr. Molly Klein for providing images. This work was supported by Minnesota Masonic Charities Eastern Star Scholarship (A.C.N.), Susan G. Komen CCR16377665 (H.L.M), NIH R01 CA212518 (H.L.M.) and NIH R01 CA215052 (K.L.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn L. Schwertfeger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nelson, A.C., Machado, H.L. & Schwertfeger, K.L. Breaking through to the Other Side: Microenvironment Contributions to DCIS Initiation and Progression. J Mammary Gland Biol Neoplasia 23, 207–221 (2018). https://doi.org/10.1007/s10911-018-9409-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-018-9409-z

Keywords

Navigation