Skip to main content

Advertisement

Log in

Stem Cells and the Developing Mammary Gland

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammary gland undergoes dynamic changes throughout life. In the mouse, these begin with initial morphogenesis of the gland in the mid-gestation embryo followed by hormonally regulated changes during puberty and later in adulthood. The adult mammary gland contains a hierarchy of cell types with varying potentials for self-maintenance and differentiation. These include cells able to produce complete, functional mammary glands in vivo and that contain daughter cells with the same remarkable regenerative potential, as well as cells with more limited clonogenic activity in vitro. Here we review how applying in vitro and in vivo methods for quantifying these cells in adult mammary tissue to fetal mammary cells has enabled the first cells fulfilling the functional criteria of transplantable, isolated mammary stem cells to be identified a few days before birth. Thereafter, the number of these cells increases rapidly. Populations containing these fetal stem cells display growth and gene expression programs that differ from their adult counterparts but share signatures characteristic of certain types of breast cancer. Such observations reinforce growing evidence of important differences between tissue-specific fetal and adult cells with stem cell properties and emphasize the merits of investigating their molecular basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CD:

Cluster designation

CFC:

Colony-forming cell

CK:

Cytokeratin

CRE:

Cre-recombinase

D:

Dimensional

E:

Embryonic day

EGF:

Epidermal growth factor

EpCAM:

Epithelial cell adhesion molecule

FGF:

Fibroblast growth factor

MRU:

Mammary repopulating unit

MUC1:

Mucin 1

References

  1. Howard BA. In the beginning: the establishment of the mammary lineage during embryogenesis. Semin Cell Dev Biol. 2012;23(5):574–82.

    Article  PubMed  CAS  Google Scholar 

  2. Brisken C, O’Malley B. Hormone action in the mammary gland. Cold Spring Harb Perspect Biol. 2010;2(12):a003178.

    Article  PubMed  CAS  Google Scholar 

  3. Richert MM, Schwertfeger KL, Ryder JW, Anderson SM. An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia. 2000;5(2):227–41.

    Article  PubMed  CAS  Google Scholar 

  4. Fata JE, Chaudhary V, Khokha R. Cellular turnover in the mammary gland is correlated with systemic levels of progesterone and not 17beta-estradiol during the estrous cycle. Biol Reprod. 2001;65(3):680–8.

    Article  PubMed  CAS  Google Scholar 

  5. Kannan N, Huda N, Tu L, Droumeva R, Aubert G, Chavez E, et al. The luminal progenitor compartment of the human mammary gland constitutes a unique site of telomere dysfunction. 2013. Stem Cell Reports (in press).

  6. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ. Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol. 2007;176(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  7. Shehata M, Teschendorff A, Sharp G, Novcic N, Russell A, Avril S, et al. Phenotypic and functional characterization of the luminal cell hierarchy of the mammary gland. Breast Cancer Res. 2012;14(5):R134.

    Article  PubMed  CAS  Google Scholar 

  8. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, et al. Purification and unique properties of mammary epithelial stem cells. Nature. 2006;439(7079):993–7.

    PubMed  CAS  Google Scholar 

  9. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.

    Article  PubMed  CAS  Google Scholar 

  10. Deugnier MA, Teuliere J, Faraldo MM, Thiery JP, Glukhova MA. The importance of being a myoepithelial cell. Breast Cancer Res. 2002;4(6):224–30.

    Article  PubMed  CAS  Google Scholar 

  11. Visvader JE. Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev. 2009;23(22):2563–77.

    Article  PubMed  CAS  Google Scholar 

  12. Mikaelian I, Hovick M, Silva KA, Burzenski LM, Shultz LD, Ackert-Bicknell CL, et al. Expression of terminal differentiation proteins defines stages of mouse mammary gland development. Vet Pathol. 2006;43(1):36–49.

    Article  PubMed  CAS  Google Scholar 

  13. Sun P, Yuan Y, Li A, Li B, Dai X. Cytokeratin expression during mouse embryonic and early postnatal mammary gland development. Histochem Cell Biol. 2010;133(2):213–21.

    Article  PubMed  CAS  Google Scholar 

  14. Spike BT, Engle DD, Lin JC, Cheung SK, La J, Wahl GM. A mammary stem cell population identified and characterized in late embryogenesis reveals similarities to human breast cancer. Cell Stem Cell. 2012;10(2):183–97.

    Article  PubMed  CAS  Google Scholar 

  15. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J, et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature. 2011;479(7372):189–93.

    Article  PubMed  Google Scholar 

  16. Sakakura T, Nishizuka Y, Dawe CJ. Capacity of mammary fat pads of adult C3H/HeMs mice to interact morphogenetically with fetal mammary epithelium. J Natl Cancer Inst. 1979;63(3):733–6.

    PubMed  CAS  Google Scholar 

  17. Till JE, Mc CE. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res. 1961;14:213–22.

    Article  PubMed  CAS  Google Scholar 

  18. Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Physiol. 1963;62:327–36.

    Article  PubMed  CAS  Google Scholar 

  19. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: a human perspective. Cell Stem Cell. 2012;10(2):120–36.

    Article  PubMed  CAS  Google Scholar 

  20. Ang YS, Gaspar-Maia A, Lemischka IR, Bernstein E. Stem cells and reprogramming: breaking the epigenetic barrier? Trends Pharmacol Sci. 2011;32(7):394–401.

    Article  PubMed  CAS  Google Scholar 

  21. Margueron R, Reinberg D. The polycomb complex PRC2 and its mark in life. Nature. 2011;469(7330):343–9.

    Article  PubMed  CAS  Google Scholar 

  22. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell. 2006;125(2):315–26.

    Article  PubMed  CAS  Google Scholar 

  23. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH. Viable offspring derived from fetal and adult mammalian cells. Nature. 1997;385(6619):810–3.

    Article  PubMed  CAS  Google Scholar 

  24. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76.

    Article  PubMed  CAS  Google Scholar 

  25. Graf T. Historical origins of transdifferentiation and reprogramming. Cell Stem Cell. 2011;9(6):504–16.

    Article  PubMed  CAS  Google Scholar 

  26. Deome KB, Faulkin Jr LJ, Bern HA, Blair PB. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res. 1959;19(5):515–20.

    PubMed  CAS  Google Scholar 

  27. Hoshino K, Gardner WU. Transplantability and life span of mammary gland during serial transplantation in mice. Nature. 1967;213(5072):193–4.

    Article  PubMed  CAS  Google Scholar 

  28. Young LJ, Medina D, DeOme KB, Daniel CW. The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland. Exp Gerontol. 1971;6(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  29. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin Jr LJ. The in vivo life span of normal and preneoplastic mouse mammary glands: a serial transplantation study. Proc Natl Acad Sci U S A. 1968;61(1):53–60.

    Article  PubMed  CAS  Google Scholar 

  30. Kordon EC, Smith GH. An entire functional mammary gland may comprise the progeny from a single cell. Development. 1998;125(10):1921–30.

    PubMed  CAS  Google Scholar 

  31. Tsai YC, Lu Y, Nichols PW, Zlotnikov G, Jones PA, Smith HS. Contiguous patches of normal human mammary epithelium derived from a single stem cell: implications for breast carcinogenesis. Cancer Res. 1996;56(2):402–4.

    PubMed  CAS  Google Scholar 

  32. Gossen M, Bujard H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc Natl Acad Sci U S A. 1992;89(12):5547–51.

    Article  PubMed  CAS  Google Scholar 

  33. van Amerongen R, Bowman AN, Nusse R. Developmental stage and time dictate the fate of Wnt/beta-catenin-responsive stem cells in the mammary gland. Cell Stem Cell. 2012;11(3):387–400.

    Article  PubMed  Google Scholar 

  34. Smalley MJ, Kendrick H, Sheridan JM, Regan JL, Prater MD, Lindeman GJ, et al. Isolation of mouse mammary epithelial subpopulations: a comparison of leading methods. J Mammary Gland Biol Neoplasia. 2012.

  35. Gyorki DE, Asselin-Labat ML, van Rooijen N, Lindeman GJ, Visvader JE. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res. 2009;11(4):R62.

    Article  PubMed  Google Scholar 

  36. Vaillant F, Lindeman GJ, Visvader JE. Jekyll or Hyde: does Matrigel provide a more or less physiological environment in mammary repopulating assays? Breast Cancer Res. 2011;13(3):108.

    Article  PubMed  Google Scholar 

  37. Badders NM, Goel S, Clark RJ, Klos KS, Kim S, Bafico A, et al. The Wnt receptor, Lrp5, is expressed by mouse mammary stem cells and is required to maintain the basal lineage. PLoS One. 2009;4(8):e6594.

    Article  PubMed  Google Scholar 

  38. Regan JL, Kendrick H, Magnay FA, Vafaizadeh V, Groner B, Smalley MJ. c-Kit is required for growth and survival of the cells of origin of Brca1-mutation-associated breast cancer. Oncogene. 2012;31(7):869–83.

    Article  PubMed  CAS  Google Scholar 

  39. Joshi PA, Jackson HW, Beristain AG, Di Grappa MA, Mote PA, Clarke CL, et al. Progesterone induces adult mammary stem cell expansion. Nature. 2010;465(7299):803–7.

    Article  PubMed  CAS  Google Scholar 

  40. Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT, et al. A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med. 2008;14(12):1384–9.

    Article  PubMed  CAS  Google Scholar 

  41. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH, et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med. 2009;15(8):907–13.

    Article  PubMed  CAS  Google Scholar 

  42. Emerman JT, Stingl J, Petersen A, Shpall EJ, Eaves CJ. Selective growth of freshly isolated human breast epithelial cells cultured at low concentrations in the presence or absence of bone marrow cells. Breast Cancer Res Treat. 1996;41(2):147–59.

    Article  PubMed  CAS  Google Scholar 

  43. Dundas SR, Ormerod MG, Gusterson BA, O’Hare MJ. Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J Cell Sci. 1991;100(Pt 3):459–71.

    PubMed  Google Scholar 

  44. Stingl J, Eaves CJ, Zandieh I, Emerman JT. Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat. 2001;67(2):93–109.

    Article  PubMed  CAS  Google Scholar 

  45. Stingl J, Eaves CJ, Emerman JT. Characterization of normal human breast epithelial cell subpopulations isolated by flourescence-activated cell sorting and their clonogenic growth in vitro. In: Ip MM, Asch BB, editors. Methods in mammary gland biology & breast cancer research. Kluwer Academic/Plenum Publishers: New York pp. 177–193.

  46. Smalley MJ, Titley J, O’Hare MJ. Clonal characterization of mouse mammary luminal epithelial and myoepithelial cells separated by fluorescence-activated cell sorting. In vitro cellular & developmental biology. Animal. 1998;34(9):711–21.

    CAS  Google Scholar 

  47. Makarem M, Kannan N, Nguyen LV, Knapp DJHF, Balani S, Prater MD, et al. Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells. Submitted. 2013.

  48. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.

    Article  PubMed  CAS  Google Scholar 

  49. Zeng YA, Nusse R. Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell. 2010;6(6):568–77.

    Article  PubMed  CAS  Google Scholar 

  50. Sakakura T, Nishizuka Y, Dawe CJ. Mesenchyme-dependent morphogenesis and epithelium-specific cytodifferentiation in mouse mammary gland. Science. 1976;194(4272):1439–41.

    Article  PubMed  CAS  Google Scholar 

  51. Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4(9):665–76.

    Article  PubMed  CAS  Google Scholar 

  52. Roy R, Chun J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer. 2012;12(1):68–78.

    Article  CAS  Google Scholar 

  53. Luo W, Semenza GL. Pyruvate kinase M2 regulates glucose metabolism by functioning as a coactivator for hypoxia-inducible factor 1 in cancer cells. Oncotarget. 2011;2(7):551–6.

    PubMed  Google Scholar 

  54. Eirew P, Kannan N, Knapp DJ, Vaillant F, Emerman JT, Lindeman GJ, et al. Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells. 2012;30(2):344–8.

    Article  PubMed  CAS  Google Scholar 

  55. Wansbury O, Panchal H, James M, Parry S, Ashworth A, Howard B. Dynamic expression of Erbb pathway members during early mammary gland morphogenesis. J Investig Dermatol. 2008;128(4):1009–21.

    Article  PubMed  CAS  Google Scholar 

  56. Howard B, Panchal H, McCarthy A, Ashworth A. Identification of the scaramanga gene implicates Neuregulin3 in mammary gland specification. Genes Dev. 2005;19(17):2078–90.

    Article  PubMed  CAS  Google Scholar 

  57. Panchal H, Wansbury O, Parry S, Ashworth A, Howard B. Neuregulin3 alters cell fate in the epidermis and mammary gland. BMC Dev Biol. 2007;7:105.

    Article  PubMed  Google Scholar 

  58. Mailleux AA, Spencer-Dene B, Dillon C, Ndiaye D, Savona-Baron C, Itoh N, et al. Role of FGF10/FGFR2b signaling during mammary gland development in the mouse embryo. Development. 2002;129(1):53–60.

    PubMed  CAS  Google Scholar 

  59. Greco V, Chen T, Rendl M, Schober M, Pasolli HA, Stokes N, et al. A two-step mechanism for stem cell activation during hair regeneration. Cell Stem Cell. 2009;4(2):155–69.

    Article  PubMed  CAS  Google Scholar 

  60. Wansbury O, Mackay A, Kogata N, Mitsopoulos C, Kendrick H, Davidson K, et al. Transcriptome analysis of embryonic mammary cells reveals insights into mammary lineage establishment. Breast Cancer Res. 2011;13(4):R79.

    Article  PubMed  Google Scholar 

  61. Vogel WF, Aszodi A, Alves F, Pawson T. Discoidin domain receptor 1 tyrosine kinase has an essential role in mammary gland development. Mol Cell Biol. 2001;21(8):2906–17.

    Article  PubMed  CAS  Google Scholar 

  62. Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ. Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron. 2002;35(4):657–69.

    Article  PubMed  CAS  Google Scholar 

  63. Kim I, Saunders TL, Morrison SJ. Sox17 dependence distinguishes the transcriptional regulation of fetal from adult hematopoietic stem cells. Cell. 2007;130(3):470–83.

    Article  PubMed  CAS  Google Scholar 

  64. Nishino J, Kim I, Chada K, Morrison SJ. Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell. 2008;135(2):227–39.

    Article  PubMed  CAS  Google Scholar 

  65. Mochizuki-Kashio M, Mishima Y, Miyagi S, Negishi M, Saraya A, Konuma T, et al. Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells. Blood. 2011;118(25):6553–61.

    Article  PubMed  CAS  Google Scholar 

  66. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, Jacobs JJ, Kieboom K, Tanger E, et al. Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev. 2005;19(12):1438–43.

    Article  PubMed  CAS  Google Scholar 

  67. Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425(6961):962–7.

    Article  PubMed  CAS  Google Scholar 

  68. Pietersen AM, Evers B, Prasad AA, Tanger E, Cornelissen-Steijger P, Jonkers J, et al. Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol. 2008;18(14):1094–9.

    Article  PubMed  CAS  Google Scholar 

  69. Shah SN, Kerr C, Cope L, Zambidis E, Liu C, Hillion J, et al. HMGA1 reprograms somatic cells into pluripotent stem cells by inducing stem cell transcriptional networks. PLoS One. 2012;7(11):e48533.

    Article  PubMed  CAS  Google Scholar 

  70. Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8(10):R214.

    Article  PubMed  Google Scholar 

  71. Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P, et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 2008;10(6):R109.

    Article  PubMed  Google Scholar 

  72. Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398(6729):708–13.

    Article  PubMed  CAS  Google Scholar 

  73. Blanpain C, Fuchs E. p63: revving up epithelial stem-cell potential. Nat Cell Biol. 2007;9(7):731–3.

    Article  PubMed  CAS  Google Scholar 

  74. Nekulova M, Holcakova J, Coates P, Vojtesek B. The role of p63 in cancer, stem cells and cancer stem cells. Cell Mol Biol Lett. 2011;16(2):296–327.

    Article  PubMed  CAS  Google Scholar 

  75. Asselin-Labat ML, Shackleton M, Stingl J, Vaillant F, Forrest NC, Eaves CJ, et al. Steroid hormone receptor status of mouse mammary stem cells. J Natl Cancer Inst. 2006;98(14):1011–4.

    Article  PubMed  CAS  Google Scholar 

  76. Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC, et al. Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol. 2007;9(2):201–9.

    Article  PubMed  CAS  Google Scholar 

  77. Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z. GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell. 2006;127(5):1041–55.

    Article  PubMed  CAS  Google Scholar 

  78. Chakrabarti R, Wei Y, Romano RA, DeCoste C, Kang Y, Sinha S. Elf5 regulates mammary gland stem/progenitor cell fate by influencing notch signaling. Stem Cells. 2012;30(7):1496–508.

    Article  PubMed  CAS  Google Scholar 

  79. Guo W, Keckesova Z, Donaher JL, Shibue T, Tischler V, Reinhardt F, et al. Slug and Sox9 cooperatively determine the mammary stem cell state. Cell. 2012;148(5):1015–28.

    Article  PubMed  CAS  Google Scholar 

  80. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316–20.

    Article  PubMed  CAS  Google Scholar 

  81. Levy V, Lindon C, Zheng Y, Harfe BD, Morgan BA. Epidermal stem cells arise from the hair follicle after wounding. FASEB J. 2007;21(7):1358–66.

    Article  PubMed  CAS  Google Scholar 

  82. van Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A, et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 2012;14(10):1099–104.

    Article  PubMed  Google Scholar 

  83. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478(7368):255–9.

    Article  PubMed  CAS  Google Scholar 

  84. Gastaldi S, Sassi F, Accornero P, Torti D, Galimi F, Migliardi G, et al. Met signaling regulates growth, repopulating potential and basal cell-fate commitment of mammary luminal progenitors: implications for basal-like breast cancer. Oncogene. 2012.

  85. Moraes RC, Zhang X, Harrington N, Fung JY, Wu MF, Hilsenbeck SG, et al. Constitutive activation of smoothened (SMO) in mammary glands of transgenic mice leads to increased proliferation, altered differentiation and ductal dysplasia. Development. 2007;134(6):1231–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

CE received support from the Canadian Breast Cancer Research Alliance with funds from the Canadian Cancer Society and from the British Columbia and Yukon Division of the Canadian Breast Cancer Foundation (BC-Y CBCF). MM held a Canadian Institutes of Health Research Studentship and NK a BC-Y CBCF Fellowship. CD was supported by T32 post-doctoral training grant 2T32CA009370; BTS was partially supported by T32 grant CA009523 and GW received support from the Breast Cancer Research Foundation, Susan G. Komen for the Cure, the Department of Defense BCRP, and many studies were enabled by Cores supported by Cancer Center Support Grant NCI 5P30CA014195. We also wish to acknowledge the many other important contributors to this field whose papers we could not reference due to space constraints.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Connie J. Eaves.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makarem, M., Spike, B.T., Dravis, C. et al. Stem Cells and the Developing Mammary Gland. J Mammary Gland Biol Neoplasia 18, 209–219 (2013). https://doi.org/10.1007/s10911-013-9284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10911-013-9284-6

Keywords

Navigation