Skip to main content
Log in

Introduction of simplex-informational descriptors for QSPR analysis of fullerene derivatives

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Rational approach towards the QSAR/QSPR modeling requires the selection of descriptors to be computationally efficient and physically and chemically meaningful. However, fullerenes and their derivatives represent challenging compounds in terms of QSPR modeling and there is a lack of efficient and comprehensible descriptors for them. Based on existing informational field model and simplex representation of molecular structure approach, an outline of descriptoral representation for fullerenes was developed. Solubility of fullerene derivatives was chosen as target property for the estimation of descriptors’ efficacy. Developed model provides well-defined physical meanings and obtained results are interpreted in terms of basic molecular properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)

    Article  CAS  Google Scholar 

  2. K.N. Semenov, N.A. Charykov, V.A. Keskinov, A.K. Piartman, A.A. Blokhin, A.A. Kopyrin, J. Chem. Eng. Data 55, 13 (2010)

    Article  CAS  Google Scholar 

  3. T. Le, V.C. Epa, F.R. Burden, D.A. Winkler, Chem. Rev. 112, 2889 (2012)

    Article  CAS  Google Scholar 

  4. T. Reti, E. Bitay, Mater. Sci. Forum 537, 439 (2007)

    Article  Google Scholar 

  5. K. Choho, W. Langenaeker, G. Van De Woude, P. Geerlings, J. Mol. Struct. 338, 293 (1995)

    Article  CAS  Google Scholar 

  6. A. Toropova, A. Toropov, E. Benfenati, G. Gini, D. Leszczynska, J. Leszczynski, Mol. Divers. 15, 249 (2011)

    Article  CAS  Google Scholar 

  7. A.A. Toropov, A.P. Toropova, E. Benfenati, D. Leszczynska, J. Leszczynski, J. Comput. Chem. 31, 381 (2010)

    CAS  Google Scholar 

  8. C.W. Yap, J. Comput. Chem. 32, 1466 (2011)

    Article  CAS  Google Scholar 

  9. A. Mauri, V. Consonni, M. Pavan, R. Todeschini, Match-Commun. Math. Co. 56, 237 (2006)

    CAS  Google Scholar 

  10. F. Ruggiu, G. Marcou, A. Varnek, D. Horvath, Mol. Inf. 29, 855 (2010)

    Article  CAS  Google Scholar 

  11. P. Tosco, T. Balle, J. Mol. Model. 17, 201 (2011)

    Article  Google Scholar 

  12. V.E. Kuz’min, L.N. Ognichenko, A.G. Artemenko, Mol. Model. 7, 278 (2001)

    Google Scholar 

  13. V.E. Kuz’min, A.G. Artemenko, E.N. Muratov, J. Comput.-Aided Des. 22, 403 (2008)

  14. D. Aleksandrova, A. Yegorova, L.N. Ognichenko, Y.V. Scripinets, I.V. Ukrainets, V.E. Kuz’min, V.P. Antonovich, Metody i Ob’ekty Khimicheskogo Analiza 3, 50 (2008)

    Google Scholar 

  15. L.N. Ognichenko, V.E. Kuz’min, A.G. Artemenko, QSAR Comb. Sci. 28, 939 (2009)

    Article  CAS  Google Scholar 

  16. T.D. Schneider, Nano Commun. Netw. 1, 173 (2010)

    Article  Google Scholar 

  17. V.E. Kuz’min, A.G. Artemenko, R.N. Lozytska, A.S. Fedtchouk, V.P. Lozitsky, E.N. Muratov, A.K. Mescheriakov, SAR QSAR Environ. Res. 16, 219 (2005)

    Article  Google Scholar 

  18. A.G. Artemenko, E.N. Muratov, V.E. Kuz’min, N.N. Muratov, E.V. Varlamova, A.V. Kuz’mina, L.G. Gorb, A. Golius, F.C. Hill, J. Leszczynski, A. Tropsha, SAR QSAR Environ. Res. 22, 575 (2011)

    Article  CAS  Google Scholar 

  19. A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, J. Am. Chem. Soc. 114, 10024 (1992)

    Article  CAS  Google Scholar 

  20. W.L. Jolly, W.B. Perry, J. Am. Chem. Soc. 95, 5442 (1973)

    Article  CAS  Google Scholar 

  21. A. Artemenko, HiT QSAR Software. http://www.qsar4u.com/)

  22. S. Wold, J. Trygg, A. Berglund, H. Antti, Chemom. Intell. Lab. 58, 131 (2001)

    Article  CAS  Google Scholar 

  23. K.E. Hevener, D.M. Ball, J.K. Buolamwini, R.E. Lee, Bioorgan Med. Chem. 16, 8042 (2008)

    Article  CAS  Google Scholar 

  24. P. Gramatica, E. Papa, QSAR Comb. Sci. 24, 953 (2005)

    Article  CAS  Google Scholar 

  25. P.A. Troshin, H. Hoppe, J. Renz, M. Egginger, J.Y. Mayorova, A.E. Goryachev, A.S. Peregudov, R.N. Lyubovskaya, G. Gobsch, N.S. Sariciftci, V.F. Razumov, Adv. Func. Mater. 19, 779 (2009)

    Article  CAS  Google Scholar 

  26. A.H. Asikainen, J. Ruuskanen, K.A. Tuppurainen, SAR QSAR Environ. Res. 15, 19 (2004)

    Article  CAS  Google Scholar 

  27. M.T. Beck, G. Mándi, Fuller. Sci. Tech. 5, 291 (1997)

    Article  CAS  Google Scholar 

  28. J.J.P. Stewart, J. Mol. Model. 19, 1 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by National Science Foundation: NSF-CREST Grant #HRD-0833178 and EPSCoR Grant #362492-190200-01\(\backslash \)NSFEPS-0903787. Authors also thank Office of Naval Research: Grant # N00014-13-1-0501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Sizochenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizochenko, N., Kuz’min, V., Ognichenko, L. et al. Introduction of simplex-informational descriptors for QSPR analysis of fullerene derivatives. J Math Chem 54, 698–706 (2016). https://doi.org/10.1007/s10910-015-0581-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-015-0581-8

Keywords

Navigation