Skip to main content
Log in

Effects of reaction reversibility on ignition and flame propagation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Chemical reactions in high-temperature combustion are reversible and reaction reversibility might have a great impact on fundamental combustion processes such as ignition and flame propagation. In this study, ignition and propagation of spherical flames with a reversible reaction are analyzed using the large-activation-energy asymptotic method. Analytical correlations are derived to describe the change of spherical flame propagation speed and flame temperature with flame radius. The reversibility parameter, fuel Lewis number, and ignition power are included in these correlations. These correlations can predict different flame regimes and transitions among the ignition kernel, flame ball, propagating spherical flame, and planar flame. Therefore, based on these correlations spherical flame propagation and initiation are then investigated with the emphasis on assessing the impact of reaction reversibility. It is found that similar to heat loss, reaction reversibility can greatly affect spherical flame propagation speed, Markstein length, flame ball radius, minimum ignition power, and critical ignition radius. Moreover, it is demonstrated that the influence of reaction reversibility depends on fuel Lewis number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Lewis, G. Von Elbe, Combustion Flames and Explosive of Gases, 2nd edn. (Academic Press, New York, 1961)

    Google Scholar 

  2. F.A. Williams, Combustion Theory, 2nd edn. (Benjamin-Cummins, Menlo Park, 1985)

    Google Scholar 

  3. Y.B. Zeldovich, The Mathematical Theory of Combustion and Explosions (Consultants Bureau, New York, 1985)

    Book  Google Scholar 

  4. B. Deshaies, G. Joulin, Combust. Sci. Technol. 37, 99 (1984)

    Article  CAS  Google Scholar 

  5. M.L. Frankel, G.I. Sivashinsky, Combust. Sci. Technol. 31, 131 (1983)

    Article  CAS  Google Scholar 

  6. P.D. Ronney, G.I. Sivashinsky, SIAM J. Appl. Math. 49, 1029 (1989)

    Article  Google Scholar 

  7. L.T. He, Combust. Theory Model. 4, 159 (2000)

    Article  Google Scholar 

  8. M. Matalon, C. Cui, J.K. Bechtold, J. Fluid Mech. 487, 179 (2003)

    Article  CAS  Google Scholar 

  9. J.K. Bechtold, C. Cui, M. Matalon, Proc. Combust. Inst. 30, 177 (2005)

    Article  Google Scholar 

  10. Z. Chen, Y. Ju, Combust. Theory Model. 11, 427 (2007)

    Article  Google Scholar 

  11. Z. Chen, M.P. Burke, Y. Ju, Proc. Combust. Inst. 33, 1219 (2011)

    Article  CAS  Google Scholar 

  12. U. Maas, J. Warnatz, Combust. Flame 74, 53 (1988)

    Article  CAS  Google Scholar 

  13. A. Frendi, M. Sibulkin, Combust. Sci. Technol. 73, 395 (1990)

    Article  CAS  Google Scholar 

  14. H.J. Kim, S.H. Chung, C.H. Sohn, KSME Int. J. 18, 838 (2004)

    Google Scholar 

  15. W.K. Zhang, Z. Chen, W.J. Kong, Combust. Flame 159, 151 (2012)

    Article  CAS  Google Scholar 

  16. M. Champion, B. Deshaies, G. Joulin, K. Kinoshita, Combust. Flame 65, 319 (1986)

    Article  CAS  Google Scholar 

  17. Y. Ko, R.W. Anderson, V.S. Arpaci, Combust. Flame 83, 75 (1991)

    Article  CAS  Google Scholar 

  18. A.P. Kelley, G. Jomaas, C.K. Law, Combust. Flame 156, 1006 (2009)

    Article  CAS  Google Scholar 

  19. P.D. Ronney, Opt. Eng. 33, 510 (1994)

    Article  CAS  Google Scholar 

  20. H. Zhang, Z. Chen, Combust. Flame 158, 1520 (2011)

    Article  CAS  Google Scholar 

  21. H. Zhang, P. Guo, Z. Chen, Proc. Combust. Inst. 34, 3267 (2013)

    Article  CAS  Google Scholar 

  22. J.W. Dold, Combust. Theory Model. 11, 909 (2007)

    Article  CAS  Google Scholar 

  23. V.V. Gubernov, H.S. Sidhu, G. Mercer, A.V. Kolobov, A.A. Polezhaev, J. Math. Chem. 44, 816 (2008)

    Article  CAS  Google Scholar 

  24. G.J. Sharpe, Combust. Theory Model. 12, 717 (2008)

    Article  CAS  Google Scholar 

  25. V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, G. Mercer, Proc. R Soc. A 466, 2747 (2010)

    Article  Google Scholar 

  26. V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Combust. Theory Model. 15, 385 (2011)

    Article  CAS  Google Scholar 

  27. G.J. Sharpe, S.A.E.G. Falle, Combust. Flame 158, 925 (2011)

    Article  CAS  Google Scholar 

  28. V.V. Gubernov, A.V. Kolobov, A.A. Polezhaev, H.S. Sidhu, Combust. Flame 160, 1060 (2013)

    Article  CAS  Google Scholar 

  29. V.N. Kurdyumov, D. Fernandez-Galisteo, Combust. Flame 159, 3110 (2012)

    Article  CAS  Google Scholar 

  30. H. Zhang, Z. Chen, Combust. Theory Model. 17, 682 (2013)

    Article  CAS  Google Scholar 

  31. J. Daou, Combust. Theory Model. 12, 349 (2008)

    Article  CAS  Google Scholar 

  32. J. Daou, Combust. Theory Model. 13, 189 (2009)

    Article  CAS  Google Scholar 

  33. J. Daou, Combust. Theory Model. 15, 437 (2011)

    Article  CAS  Google Scholar 

  34. C.K. Law, Combustion Physics (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  35. Y. Wu, Z. Chen, Acta Mech. Sin. 28, 359 (2012)

    Article  CAS  Google Scholar 

  36. Z. Chen, Combust. Flame 158, 291 (2011)

    Article  CAS  Google Scholar 

  37. A.P. Kelley, C.K. Law, Combust. Flame 156, 1844 (2009)

    Article  CAS  Google Scholar 

  38. Z. Chen, X. Gou, Y. Ju, Combust. Sci. Technol. 182, 124 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51322602 and 51136005), Doctoral Fund of Ministry of Education of China (No. 20120001110080), and State Key Laboratory of Engines at Tianjin University (No. K2012-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 349 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wu, Y. & Chen, Z. Effects of reaction reversibility on ignition and flame propagation. J Math Chem 53, 386–401 (2015). https://doi.org/10.1007/s10910-014-0430-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0430-1

Keywords

Navigation