Skip to main content
Log in

Non-adiabatic transitions near avoided crossings: theory and numerics

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We present a review of rigorous mathematical results about non-adiabatic transitions in molecular systems that are associated with avoided crossings of electron energy level surfaces. We then present a novel numerical technique for studying these transitions that is based on expansions in semiclassical wavepackets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Betz V., Goddard B.: Accurate prediction of nonadiabatic transitions through avoided crossings. Phys. Rev. Lett. 103, 213001 (2009)

    Article  Google Scholar 

  2. Betz V., Goddard B., Teufel S.: Superadiabatic transitions in quantum molecular dynamics. Proc. R. Soc. A Math. Phys. Eng. Sci. 465, 3553–3580 (2009)

    Article  CAS  Google Scholar 

  3. Faou E., Gradinaru V., Lubich C.: Computing semiclassical quantum dynamics with Hagedorn wavepackets SIAM. J. Sci. Comput. 31, 3027–3041 (2009)

    Google Scholar 

  4. Gradinaru V., Hagedorn G.A., Joye A.: Tunneling dynamics and spawning with adaptive semi-classical wave-packets. J. Chem. Phys. 132, 184108 (2010)

    Article  Google Scholar 

  5. Hagedorn G.A.: Semiclassical quantum mechanics. I. The \({\hbar \rightarrow 0}\) limit for coherent states. Commun. Math. Phys. 71, 77–93 (1980)

    Article  Google Scholar 

  6. Hagedorn G.A.: Semiclassical quantum mechanics. IV. Large order asymptotics and more general states in more than one dimension. Ann. Inst. H. Poincaré Phys. Théor. 42, 363–374 (1985)

    Google Scholar 

  7. Hagedorn G.A.: High order corrections to the time-dependent Born–Oppenheimer approximation II: Coulomb systems. Commun. Math. Phys. 117, 387–403 (1988)

    Article  Google Scholar 

  8. Hagedorn G.A.: Molecular propagation through electron energy level crossings. Mem. Am. Math Soc. 111(536), 1–130 (1994)

    Google Scholar 

  9. Hagedorn G.A.: Classification and normal forms for avoided crossings of quantum-mechanical energy levels. J. Phys. A 31, 369–383 (1998)

    Article  Google Scholar 

  10. Hagedorn G.A.: Raising and lowering operators for semiclassical wave packets. Ann. Phys. 269, 77–104 (1998)

    Article  CAS  Google Scholar 

  11. Hagedorn G.A., Joye A.: Landau–Zener transitions through small electronic eigenvalue gaps in the Born–Oppenheimer approximation. Ann. Inst. H. Poincaré Sect. A. Phys. Théor. 68, 85–134 (1998)

    Google Scholar 

  12. Hagedorn G.A., Joye A.: Determination of non-adiabatic scattering wave functions in a Born–Oppenheimer model. Ann. Henri Poincaré 6, 937–990 (2005)

    Article  CAS  Google Scholar 

  13. G.A. Hagedorn, A. Joye, Erratum to: “determination of non-adiabatic scattering wave functions in a Born-Oppenheimer model” [Ann Henri Poincaré 6(5), 937–990 (2005); mr2219864]. Ann Henri Poincaré 6, 1197–1199 (2005)

  14. Klein M., Martinez A., Seiler R., Wang X.: On the Born–Oppenheimer expansion for polyatomic molecules. Comm. Math. Phys. 143, 607–639 (1992)

    Article  Google Scholar 

  15. L. Landau, Collected Papers of Landau L. D. Edited and with an introduction by ter Haar D. (Gordon and Breach, New York, 1967)

  16. Lasser C., Swart T.: Single switch surface hopping for a model of pyrazine. J. Chem. Phys. 129, 034302 (2008)

    Article  Google Scholar 

  17. Nakamura H.: Nonadiabatic Transition: Concepts, Basic Theories and Applications. World Scientific, New Jersey, NJ (2002)

    Book  Google Scholar 

  18. H. Nakamura, Advances in chemical physics, vol. 138, chap. Nonadiabatic chemical dynamics: comprehension and control of dynamics, and manifestation of molecular functions (Wiley, New York, 2008)

  19. Nanbu S., Ishida T., Nakamura H.: Future perspectives of nonadiabatic chemical dynamics. Chem. Sci. 1, 663–674 (2010)

    Article  CAS  Google Scholar 

  20. Puzari P., Deshpande S., Adhikari S.: A quantum-classical treatment of non-adiabatic transitions. Chem. Phys. 300, 305–323 (2004)

    Article  CAS  Google Scholar 

  21. Rousse V.: Landau–Zener transitions for eigenvalue avoided crossings in the adiabatic and Born–Oppenheimer approximations. Asymptot. Anal. 37, 293–328 (2004)

    Google Scholar 

  22. Tully J.: Molecular dynamics with electronic transitions. J. Chem. Phys. 93, 1061 (1990)

    Article  CAS  Google Scholar 

  23. Tully J., Preston R.: Trajectory surface hopping approach to nonadiabatic molecular collisions: the reaction of H + with D 2. J. Chem. Phys. 55, 562–572 (1971)

    Article  CAS  Google Scholar 

  24. Zener C.: Non-adiabatic crossing of energy levels. Proc. Phil. Soc. Lond. 137, 696–702 (1932)

    Article  Google Scholar 

  25. Zewail A.: Femtochemistry: Ultrafast Dynamics of the Chemical Bond. World Scientific, Singapore (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Hagedorn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourquin, R., Gradinaru, V. & Hagedorn, G.A. Non-adiabatic transitions near avoided crossings: theory and numerics. J Math Chem 50, 602–619 (2012). https://doi.org/10.1007/s10910-011-9827-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9827-2

Keywords

Navigation