Skip to main content
Log in

Nucleation of Bubbles by Electrons in Liquid Helium-4

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on experiments in which we study cavitation resulting from electrons in liquid helium. Electrons are introduced into the liquid by a radioactive source. After an electron comes to rest in the liquid, it forces open a small cavity referred to as an electron bubble. To study cavitation, a sound pulse is generated by means of a hemispherical piezoelectric transducer producing a large-amplitude pressure oscillation at the acoustic focus. If an electron is in the vicinity of the focus and the negative-going pressure swing exceeds a critical value, a cavitation bubble is produced which can be detected by light scattering. Two distinct critical pressures \( P_{\text{el}} \) and \( P_{\text{rare}} \) have been measured. The first corresponds to cavitation resulting from the application of a reduced pressure to liquid containing an electron which has already formed an electron bubble. The second is the critical pressure needed to lead to cavitation when an electron enters the liquid at a time and place where there is already a reduced pressure. We have measured these two pressures as a function of temperature and consider possible explanations for the difference between them. In addition to these clearly seen cavitation thresholds, there are some cavitation events that have been detected with a threshold that is at an even smaller negative pressure than \( P_{\text{el}} \) and \( P_{\text{rare}} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. There is a mistake in this paper. The threshold pressure should be \( - \,1.89 \times 0.6 = - \,1.13 \) bars, not \( - \,1.3 \) bars.

  2. The correction due to Roche et al. [41] has been applied.

References

  1. J.A. Nissen, E. Bodegom, L.C. Brodie, J.S. Semura, Phys. Rev. B 40, 6617 (1989)

    Article  ADS  Google Scholar 

  2. Q. Xiao, H.J. Maris, J. Low Temp. Phys. 82, 105 (1991)

    Article  ADS  Google Scholar 

  3. M.S. Pettersen, S. Balibar, H.J. Maris, Phys. Rev. B 49, 12062 (1994)

    Article  ADS  Google Scholar 

  4. H. Lambaré, P. Roche, S. Balibar, H.J. Maris, O.A. Andreeva, C. Guthmann, K.O. Keshishev, E. Rolley, Eur. Phys. J. 2, 381 (1998)

    Article  ADS  Google Scholar 

  5. F. Caupin, S. Balibar, Phys. Rev. B 64, 064507 (2001)

    Article  ADS  Google Scholar 

  6. X. Chavanne, S. Balibar, F. Caupin, J. Low Temp. Phys. 126, 615 (2002)

    Article  ADS  Google Scholar 

  7. A. Qu, A. Trimeche, J. Dupont-Roc, J. Grucker, Ph Jacquier, Phys. Rev. B 91, 214115 (2015)

    Article  ADS  Google Scholar 

  8. D.N. Sinha, J.S. Semura, L.C. Brodie, Phys. Rev. A 26, 1048 (1982)

    Article  ADS  Google Scholar 

  9. D. Lezak, L.C. Brodie, J.S. Semura, E. Bodegom, Phys. Rev. B 37, 150 (1988)

    Article  ADS  Google Scholar 

  10. V.L. Tsymbalenko, J. Low Temp. Phys. 88, 55 (1992)

    Article  ADS  Google Scholar 

  11. X. Chavanne, S. Balibar, F. Caupin, Phys. Rev. Lett. 86, 5506 (2001)

    Article  ADS  Google Scholar 

  12. X. Chavanne, S. Balibar, F. Caupin, J. Low Temp. Phys. 125, 155 (2001)

    Article  ADS  Google Scholar 

  13. F. Werner, G. Beaume, A. Hobeika, S. Nascimbene, C. Herrmann, F. Caupin, S. Balibar, J. Low Temp. Phys. 136, 93 (2004)

    Article  ADS  Google Scholar 

  14. S. Balibar, F. Caupin, C. R. Phys. 7, 988 (2006)

    Article  ADS  Google Scholar 

  15. R. Ishiguro, F. Caupin, S. Balibar, Europhys. Lett. 75, 91 (2006)

    Article  ADS  Google Scholar 

  16. R. Ishiguro, F. Caupin, S. Balibar, J. Low Temp. Phys. 148, 645 (2007)

    Article  ADS  Google Scholar 

  17. F. Souris, J. Grucker, J. Dupont-Roc, P. Jacquier, J. Low Temp. Phys. 162, 412 (2011)

    Article  ADS  Google Scholar 

  18. F. Souris, J. Grucker, J. Dupont-Roc, P. Jacquier, Europhys. Lett. 95, 66011 (2011)

    Article  ADS  Google Scholar 

  19. F. Souris, A. Qu, J. Dupont-Roc, J. Grucker, P. Jacquier, J. Low Temp. Phys. 179, 390 (2015)

    Article  ADS  Google Scholar 

  20. C.-K. Su, C.E. Cramer, H.J. Maris, J. Low Temp. Phys. 113, 479 (1998)

    Article  ADS  Google Scholar 

  21. J. Classen, C.-K. Su, M. Mohazzab, H.J. Maris, Phys. Rev. B 57, 3000 (1998)

    Article  ADS  Google Scholar 

  22. V.A. Akulichev, Y.Y. Boguslavskii, Sov. Phys. JETP 35, 1012 (1972)

    ADS  Google Scholar 

  23. H.J. Maris, D. Konstantinov, J. Low Temp. Phys. 121, 615 (2000)

    Article  ADS  Google Scholar 

  24. D. Konstantinov, H.J. Maris, Phys. Rev. Lett. 90, 025302 (2003)

    Article  ADS  Google Scholar 

  25. W. Guo, D. Jin, G.M. Seidel, H.J. Maris, Phys. Rev. B 79, 054515 (2009)

    Article  ADS  Google Scholar 

  26. G.M. Seidel, T.M. Ito, A. Ghosh, B. Sethumadhavan, Phys. Rev. C 89, 025808 (2014)

    Article  ADS  Google Scholar 

  27. D.N. McKinsey, C.R. Brome, J.S. Butterworth, S.N. Dzhosyuk, P.R. Huffman, C.E.H. Mattoni, J.M. Doyle, R. Golub, K. Habicht, Phys. Rev. A 59, 200 (1999)

    Article  ADS  Google Scholar 

  28. J.W. Keto, F.J. Soley, M. Stockton, W.A. Fitzsimmons, Phys. Rev. A 10, 872 (1974)

    Article  ADS  Google Scholar 

  29. J.W. Keto, M. Stockton, W.A. Fitzsimmons, Phys. Rev. Lett. 28, 792 (1972)

    Article  ADS  Google Scholar 

  30. V.B. El’tsov, A.Y. Parshin, I.A. Todoshchenko, Zh. Exper. Teor. Fiz. 108, 1657 (1995)

    Google Scholar 

  31. V.B. El’tsov, A.Y. Parshin, I.A. Todoshchenko, Sov. Phys. JETP 81, 909 (1995)

    ADS  Google Scholar 

  32. V.B. El’tsov, S.N. Dzhosyuk, A.Y. Parshin, I.A. Todoshchenko, J. Low Temp. Phys. 110, 219 (1998)

    Article  ADS  Google Scholar 

  33. M. Guilleumas, M. Pi, M. Barranco, J. Navarro, M.A. Solis, Phys. Rev. B 47, 9116 (1993)

    Article  ADS  Google Scholar 

  34. D.M. Jezek, M. Guilleumas, M. Pi, M. Barranco, J. Navarro, Phys. Rev. B 48, 16582 (1993)

    Article  ADS  Google Scholar 

  35. S.C. Hall, H.J. Maris, J. Low Temp. Phys. 107, 263 (1997)

    Article  ADS  Google Scholar 

  36. A. Ghosh, H.J. Maris, J. Low Temp. Phys. 134, 251 (2004)

    Article  ADS  Google Scholar 

  37. D. Konstantinov, W. Homsi, J. Luzuriaga, C.-K. Su, M.A. Weilert, H.J. Maris, J. Low Temp. Phys. 113, 485 (1998)

    Article  ADS  Google Scholar 

  38. J.R. Broomall, W.D. Johnson, D.G. Onn, Phys. Rev. B 14, 2819 (1976)

    Article  ADS  Google Scholar 

  39. M. Iino, M. Suzuki, A.J. Ikushima, J. Low Temp. Phys. 61, 155 (1985)

    Article  ADS  Google Scholar 

  40. P. Roche, G. Deville, H.J. Appleyard, F.I.B. Williams, J. Low Temp. Phys. 106, 565 (1997)

    Article  ADS  Google Scholar 

  41. K. Vokurka, Acustica 59, 214 (1986)

    Google Scholar 

  42. L.B. Lurio, T.A. Rabedeau, P.S. Pershan, I.F. Silvera, M. Deutsch, S.D. Kosowsky, B.M. Ocko, Phys. Rev. B 48, 9644 (1993)

    Article  ADS  Google Scholar 

  43. J. Eloranta, V.A. Apkarian, J. Chem. Phys. 117, 10139 (2002)

    Article  ADS  Google Scholar 

  44. D. Jin, H.J. Maris, J. Low Temp. Phys. 158, 317 (2010)

    Article  ADS  Google Scholar 

  45. A.G. Tenner, Nucl. Inst. Methods 22, 1 (1963)

    Article  ADS  Google Scholar 

  46. G. Careri, U. Fasoli, F.S. Gaeta, Nuovo Cim. 15, 774 (1960)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Barranco, A. Ghosh and D. Jin for valuable discussions. This work was supported in part by the US National Science Foundation through Grant No. DMR-1505044 and by the Julian Schwinger Foundation Grant JSF-15-05-0000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Sirisky, S., Wei, W. et al. Nucleation of Bubbles by Electrons in Liquid Helium-4. J Low Temp Phys 192, 48–64 (2018). https://doi.org/10.1007/s10909-018-1879-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-018-1879-2

Keywords

Navigation