Skip to main content
Log in

Lattice Relaxation in Solid 4He: Effect on Dynamics of 3He Impurities

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present a new simplified derivation of the effect of lattice relaxation that accompanies the quantum tunneling of 3He impurities in solid 4He on the nuclear spin-lattice relaxation of the 3He impurities for very low impurity concentrations. As a result of the larger zero point motion of the 3He impurity compared to the 4He atoms, a significant lattice distortion accompanies the impurity as it moves through the lattice and the dynamics of the impurity depends on both the interaction energy between two 3He atoms and on the relaxation of the lattice for the tunneling impurity. Using a phenomenological model for the lattice relaxation we compare the nuclear spin-lattice relaxation rates observed at low temperatures with the dependence on temperature expected for a 4He lattice relaxation comparable to that observed by Beamish et al. (Phys. Rev. Lett. 96:195304, 2006).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. J. Day, J. Beamish, Phys. Rev. Lett. 96, 105304 (2006)

    Article  ADS  Google Scholar 

  2. J.M. Goodkind, Phys. Rev. Lett. 89, 095301 (2002)

    Article  ADS  Google Scholar 

  3. E. Kim, M.H.W. Chan, Nature 427, 224 (2004)

    Article  ADS  Google Scholar 

  4. E. Kim, M.H.W. Chan, Science 305, 1941 (2004)

    Article  ADS  Google Scholar 

  5. O. Syshchenko, J. Day, J. Beamish, Phys. Rev. Lett. 104, 195301 (2010)

    Article  ADS  Google Scholar 

  6. M.W. Ray, R.B. Hallock, Phys. Rev. B 79, 224302 (2009)

    Article  ADS  Google Scholar 

  7. J.R. Beamish, A.D. Fefferman, X. Rojas, S. Balibar, Phys. Rev. B 85, 180501 (2012)

    Article  ADS  Google Scholar 

  8. H. Choi, D. Takahashi, K. Kono, E. Kim, Science 330, 1512 (2010)

    Article  ADS  Google Scholar 

  9. P. Gumann, M.C. Keiderling, H. Kojima, J. Low Temp. Phys. 168, 162 (2012)

    Article  ADS  Google Scholar 

  10. E. Blackburn, J. Goodkind, S.K. Sinha, C. Broholm, J. Copley, A. Erwin, J. Phys. 71, 673 (2009)

    Google Scholar 

  11. S. Balibar, A.D. Fefferman, A. Haziot, R. Rojas, J. Low Temp. Phys. 168, 221 (2012)

    Article  ADS  Google Scholar 

  12. S.S. Kim, C. Huan, Y. Lin, J.S. Xia, D. Candela, N.S. Sullivan, J. Low Temp. Phys. 158, 584 (2010)

    Article  ADS  Google Scholar 

  13. S.S. Kim, C. Huan, Y. Lin, J.S. Xia, D. Candela, N.S. Sullivan, Phys. Rev. Lett. 106, 185303 (2011)

    Article  ADS  Google Scholar 

  14. S.S. Kim, C. Huan, Y. Lin, J.S. Xia, D. Candela, N.S. Sullivan, Phys. Rev. B 87, 224303 (2013)

    Article  ADS  Google Scholar 

  15. M.G. Richards, J. Pope, P.S. Tofts, J.H. Smith, J. Low Temp. Phys. 24, 1 (1976)

    Article  ADS  Google Scholar 

  16. J.G. Schratter, A.R. Allen, M.G. Richards, J. Low Temp. Phys. 57, 179 (1984)

    Article  ADS  Google Scholar 

  17. R. Toda, W. Onoe, M. Kanemoto, T. Kakuda, Y. Tanaka, Y. Sasaki, J. Low Temp. Phys. 162, 476 (2011)

    Article  ADS  Google Scholar 

  18. A. Landesman, Phys. Lett. A 54, 37 (1975)

    Article  Google Scholar 

  19. M.G. Richards, J.H. Smith, P.S. Tofts, W.J. Mullin, Phys. Rev. Lett. 34, 1545 (1975)

    Article  ADS  Google Scholar 

  20. J.D. Eshelby, Solid State Phys. 3, 79 (1956)

    Google Scholar 

  21. R.B. Griffiths, Phys. Rev. 124, 1023 (1961)

    Article  ADS  Google Scholar 

  22. B.P. Cowan, Nuclear Magnetic Resonance and Relaxation (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  23. P.W. Anderson, Phys. Rev. 82, 342 (1951)

    Google Scholar 

  24. A. Abragam, Principles of Nuclear Magnetism (Clarendon Press, Oxford, 1961), Chap. IX

    Google Scholar 

  25. M.A. Paalanen, D.J. Bishop, H.W. Dail, Phys. Rev. Lett. 46, 664 (1981)

    Article  ADS  Google Scholar 

  26. I. Iwasa, Phys. Rev. B 81, 104527 (2010)

    Article  ADS  Google Scholar 

  27. I. Iwasa, K. Araki, H. Suzuki, J. Phys. Soc. Jpn. 46, 1119 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful discussions with S. Balibar, B. Cowan, A. Dorsey and I. Iwasa. The work was carried out at the National High Magnetic Field Laboratory’s High B/T Facility supported by the NSF-DMR-1157490. NS also acknowledges support from the NSF, DMR-1303599.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Sullivan.

Appendix A: Calculation of the Correlation Time for High 3He Concentrations

Appendix A: Calculation of the Correlation Time for High 3He Concentrations

Following the method of Kubo (Cowan [22], Chap. 7), one calculates the time derivative of the autocorrelation function, \(\ddot {\varGamma}_{(ij),(ij)}(t)\), and assuming an exponential decay one determines a correlation time \(\tau_{c}^{-1}=G_{0}(0)^{-1}\int dt \ddot{\varGamma}_{(ij),(ij)}(t)\) The time derivative

$${\ddot{\varGamma}} =\frac{4}{x_3}\bigl\langle \bigl[T_{ij}^m,H_J \bigr]e^{-iH_Kt}\bigl[T_{ij}^{-m},H_J \bigr]e^{iH_Kt}\bigr\rangle=6J_{34}^2 \exp\biggl[ \sum _{p(ij)} i(K_{jp}-K_{ip})t\biggr] $$

with an impurity tunneling from site p to site i with spectator at site j. The energy difference K jp K ip can be replaced by the average of the spatial gradient of the interaction energy \(K_{ij}=K_{0}(3\cos^{2}\theta_{ij}-1)/r_{ij}^{3}\) to yield

$$\ddot{\varGamma}(t)=12J_{34}^2\cos\biggl(\sum_p\omega_pt\biggr) \quad \mbox{with}\ \omega_p=\frac{3K_0}{(R/a_0)^4}. $$

The sum of the oscillatory terms cos(ω p t) rapidly averages to zero and only small deviations from unity of the cosine term will contribute to the overall average. Using the method of Anderson[23] we write \(\ddot{\varGamma}(t)= 12J_{34}^{2}\prod_{p}{[1+(\cos\omega _{p}t -1)]}\) which can be expanded and the term cosω p t−1 replaced by its average to yield \(\ddot{\varGamma}(t)=12J_{34}^{2}\exp {[N\langle \cos\omega_{p}t-1\rangle}]\). The average

$$\begin{aligned} N\bigl\langle \cos(\omega_pt)-1\bigr\rangle =& \frac{2\pi N}{V} \int_0^{\pi/2}\!\!d\theta \sin\theta\int_0^{\infty}\!\!\!R^{-4} dR\biggl(\cos\biggl[\frac{3K_0(1-3cos^2\theta)t}{R^4}\biggr]-1\biggr)\\ =&-\frac{\pi}{2}x_3 I_1I_2(3K_0t)^{-3/4}=-0.71x_3(K_0t)^{3/4} \end{aligned}$$

where \(I_{1}=\int_{0}^{\pi/2} \sin\theta d \theta|1-3\cos^{2}\theta|^{3/4}\) and \(I_{2}=\int_{0}^{\infty}dx[\frac{\cos x-1}{x^{1/4}}]=2^{3/4}\varGamma(\frac {3}{4}) \times \cos(\frac{3\pi}{8})\). From Eq. (6) we find \(\tau_{c}^{-1}=19\frac{J_{34}^{2}}{K_{0}}x_{3}^{-1/3}\) in reasonable agreement with Landesman [18].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, N.S., Candela, D., Kim, S.S. et al. Lattice Relaxation in Solid 4He: Effect on Dynamics of 3He Impurities. J Low Temp Phys 175, 133–139 (2014). https://doi.org/10.1007/s10909-013-0932-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0932-4

Keywords

Navigation