Skip to main content

Advertisement

Log in

Simulations of Adsorption of CO2 and CH4 in MOFs: Effect of the Size and Charge Distribution on the Selectivity

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using the method of Grand Canonical Monte Carlo we have computed the adsorption of CO2 and CH4 in MOFs with a periodic cubic structure. We used a model of the MOF that allows systematic variations in the charge distribution, size and LJ parameters. We estimated the selectivity of CO2 over CH4 for different temperatures in MOFs with various sizes and charge distributions. The results show that inserting dipoles at the corners of the MOF’s unit cell would increase the selectivity of CO2; on the other hand adding quadrupoles to the structure is ineffective. The size of the cell strongly affects the adsorption of CO2 and selectivity: compressing the cell in only 10 % significantly increases the selectivity; expanding the cell by 20 % reduces it. Regarding thermal effects, we estimated that the selectivity drops from 250 to 2 when the temperature rises from 120 K to 300 K. Although this model is inspired by the IRMOF-1, which has a cubic unit cell, it can be adapted to represent other MOFs with noncubic structures by modifying the geometry accordingly. This work implies that MOFs suit gas separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Singh, E. Croiset, P.L. Douglas, M.A. Douglas, Energy Convers. Manag. 44, 3073 (2003)

    Article  Google Scholar 

  2. C.M. White, D.H. Smith, K.L. Jones, A.L. Goodman, S.A. Jikich, R.B. LaCount, S.B. DuBose, E. Ozdemir, B.I. Morsi, K.T. Schroeder, Energy Fuels 19, 659 (2005)

    Article  Google Scholar 

  3. D.M. Ruthve, S. Farooq, K. Knaebel, Pressure Swing Adsorption (VCH, New York, 1994)

    Google Scholar 

  4. S. Sircar, Ind. Eng. Chem. Res. 45, 5435–5448 (2006)

    Article  Google Scholar 

  5. D. Britt, D. Tranchemontagne, O.M. Yaghi, Proc. Natl. Acad. Sci. USA 105, 11623–11627 (2008)

    Article  ADS  Google Scholar 

  6. Carbon Capture Research, Publication of the Department of Energy. http://www.fossil.energy.gov/programs/sequestration/capture/index.html. Accessed 10 October 2012

  7. N.W. Ockwig, T.M. Nenoff, Chem. Rev. 107, 4078–4110 (2007)

    Article  Google Scholar 

  8. R.T. Yang, Chem. Eng. 1 (1997)

  9. M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Science 295, 479 (2002)

    Article  ADS  Google Scholar 

  10. M.J. Bennet, J.V. Smith, Mater. Res. Bull. 3, 633 (1968)

    Article  Google Scholar 

  11. T. Düren, R.Q. Snurr, J. Phys. Chem. B 108, 15703 (2004)

    Article  Google Scholar 

  12. J.A. Greathouse, T.L. Kinnibrugh, M.D. Allendorf, Ind. Eng. Chem. Res. 48, 3425–3431 (2009)

    Article  Google Scholar 

  13. K.S. Walton, A.R. Millward, D. Dubbeldam, H. Frost, J.J. Low, O.M. Yaghi, R.Q. Snurr, J. Am. Chem. Soc. 130, 406 (2008)

    Article  Google Scholar 

  14. D. Dubbeldam, H. Frost, K.S. Walton, R.Q. Snurr, Fluid Phase Equilib. 261, 152 (2007)

    Article  Google Scholar 

  15. S. Keskin, D.S. Sholl, J. Phys. Chem. C 111, 14055 (2007)

    Article  Google Scholar 

  16. R. Babarao, Z. Hu, J. Jiang, S. Chempath, S.I. Sandler, Langmuir 23, 659 (2007)

    Article  Google Scholar 

  17. S. Keskin, J. Liu, R.B. Rankin, J.K. Johnson, D.S. Sholl, Ind. Eng. Chem. Res. 48, 2355 (2009)

    Article  Google Scholar 

  18. B. Smit, D. Frenkel, Understanding Molecular Simulation. Computational Science Series, vol. 1 (Academic Press, London, 2001)

    Google Scholar 

  19. S.M. Gatica, M.J. Bojan, G. Stan, M.W. Cole, J. Chem. Phys. 114, 3765 (2001)

    Article  ADS  Google Scholar 

  20. R.O. Watts, I.J. McGee, Liquid State Chemical Physics (Wiley, New York, 1976)

    Google Scholar 

  21. G.C. Maitland, M. Rigby, E.B. Smith, W.A. Wakeham, Intermolecular Forces: Their Origin and Determination (Clarendon, Oxford, 1987). Tables A 3.1 and A 3.2, pp. 565–566

    Google Scholar 

  22. L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Dover, Mineola, 2007), p. 67. (Reprint of 1997 Oxford U. P. edition)

    Google Scholar 

  23. T. Duren, L. Sarkisov, O.M. Yaghi, R.Q. Snurr, Langmuir 20, 2683–2689 (2004)

    Article  Google Scholar 

  24. M. Bienfait, P. Zeppenfeld, N. Dupont-Pavlovsky, M. Muris, M.R. Johnson, T. Wilson, M. DePies, O.E. Vilches, Phys. Rev. B 70, 035410 (2004)

    Article  ADS  Google Scholar 

  25. A.R. Millward, O.M. Yaghi, J. Am. Chem. Soc. 127, 17998 (2005)

    Article  Google Scholar 

  26. A.L. Myers, J.M. Prausnitz, AIChE J. 11, 121 (1965)

    Article  Google Scholar 

  27. R.T. Yang, Gas Separation by Adsorption Processes (Butterworths, Boston, 1987)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Donors of the American Chemical Society Petroleum Research Fund and NSF DMR1006010. We thank Milton Cole for his helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvina M. Gatica.

Appendix

Appendix

For a system with two phases in equilibrium, like the case of an adsorbate in equilibrium with its vapor, the chemical potential of each phases are equal,

(A.1)

At very low coverage, the adsorbate may be approximated by an ideal gas. Assuming that there is only one kind of adsorption site of energy −ε, the chemical potential of a 3-dimensional adsorbate is

(A.2)

where n is the coverage and λ=(h 2/(2πmk B T))1/2 is the thermal wavelength.

Assuming that the vapor is an ideal gas as well,

(A.3)

where P is the equilibrium vapor pressure. Equating (A.2) and (A.3), we obtain

(A.4)

Using the definition of q st given in (5), it results

(A.5)

Following the same steps for a 2-dimensional adsorbate, in which case μ ads=−ε+k B Tln( 2) we obtain

(A.6)

For a one-dimensional adsorbate, for example the atoms adsorbed in the groove of a bundle of nanotubes, the result is

(A.7)

given that in this case μ ads=−ε+k B Tln().

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiga, S.M., Medina, M.A., Durodola, O.J. et al. Simulations of Adsorption of CO2 and CH4 in MOFs: Effect of the Size and Charge Distribution on the Selectivity. J Low Temp Phys 172, 274–288 (2013). https://doi.org/10.1007/s10909-013-0864-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-013-0864-z

Keywords

Navigation