Skip to main content
Log in

Tests of Pore-Size Distributions Deduced from Inversion of Simulated and Real Adsorption Data

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

An adsorption isotherm provides indirect information about the geometry of the host material and its interaction with the adsorbed fluid. This paper presents a critical study of the “inversion” of experimental data to elucidate desired information about this geometry. Using Ar and H2 as representative classical and quantum fluids and a carbon slit-pore geometry, we compare the accuracy of isotherms derived from non-local density functional theory with isotherms from grand canonical Monte Carlo simulations, using a quantum-corrected potential for H2. We determine the pore size distributions (PSDs) for a series of model and experimental materials by inverting the adsorption integral equation, with the goal of probing the ability of the inversion procedure to reproduce faithfully the input pore size distribution and ascertain the reality of anomalous gaps often deduced in the literature. Drawing from the GCMC simulations, we then explore the concept of effective porous materials, or ‘iso-PSDs’, which have similar adsorption isotherms, despite very different pore size distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Lastoskie, K.E. Gubbins, N. Quirke, Langmuir 9, 2693 (1993)

    Article  Google Scholar 

  2. C. Lastoskie, K.E. Gubbins, N. Quirke, J. Phys. Chem.-Us 97, 4786 (1993)

    Article  Google Scholar 

  3. P.I. Ravikovitch, G.L. Haller, A.V. Neimark, Adv. Colloid Interface Sci. 76, 203 (1998)

    Article  Google Scholar 

  4. R.J. Dombrowski, D.R. Hyduke, C.M. Lastoskie, Langmuir 16, 5041 (2000)

    Article  Google Scholar 

  5. M. El-Merraoui, M. Aoshima, K. Kaneko, Langmuir 16, 4300 (2000)

    Article  Google Scholar 

  6. E.A. Ustinov, D.D. Do, Adsorpt. Sci. Technol. 24, 1 (2006)

    Article  Google Scholar 

  7. J.P. Olivier, W.B. Conklin, M.V. Szombathely, in Characterization of Porous Solids (COPS-III) Proceedings, ed. by F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, K.K. Unger (Amsterdam, 1994)

  8. R.F. Cracknell, K.E. Gubbins, M. Maddox, D. Nicholson, Acc. Chem. Res. 28, 281 (1995)

    Article  Google Scholar 

  9. P.I. Ravikovitch, A. Vishnyakov, R. Russo, A.V. Neimark, Langmuir 16, 2311 (2000)

    Article  Google Scholar 

  10. Z.M. Tan, K.E. Gubbins, J. Phys. Chem.-Us 94, 6061 (1990)

    Article  Google Scholar 

  11. J. Jagiello, C.O. Ania, J.B. Parra, L. Jagiello, J.J. Pis, Carbon 45, 1066 (2007)

    Article  Google Scholar 

  12. J. Jagiello, M. Thommes, Carbon 42, 1227 (2004)

    Article  Google Scholar 

  13. P.I. Ravikovitch, A.V. Neimark, Langmuir 22, 11171 (2006)

    Article  Google Scholar 

  14. R. Dash, J. Chmiola, G. Yushin, Y. Gogotsi, G. Laudisio, J. Singer, J. Fischer, S. Kucheyev, Carbon 44, 2489 (2006)

    Article  Google Scholar 

  15. G. Yushin, R. Dash, J. Jagiello, J.E. Fischer, Y. Gogotsi, Adv. Funct. Mater. 16, 2288 (2006)

    Article  Google Scholar 

  16. D.A. Fonseca, H.R. Gutierrez, A.D. Lueking, Micropor. Mesopor. Mat. 113, 178 (2008)

    Article  Google Scholar 

  17. J.P. Olivier, Carbon 36, 1469 (1998)

    Article  Google Scholar 

  18. R.T. Yang, Adsorbents: Fundamentals and Applications (Wiley, Hoboken, 2003)

    Book  Google Scholar 

  19. P. Tarazona, U.M.B. Marconi, R. Evans, Mol. Phys. 60, 573 (1987)

    Article  ADS  Google Scholar 

  20. R.P. Feynman, Statistical Mechanics, A Set of Lectures (Reading, 1972)

  21. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  22. L.M. Sese, Mol. Phys. 81, 1297 (1994)

    Article  ADS  Google Scholar 

  23. L.M. Sese, Mol. Phys. 85, 931 (1995)

    Article  ADS  Google Scholar 

  24. W. Steele, Chem. Rev. 93, 2355 (1993)

    Article  Google Scholar 

  25. L.W. Bruch, M.W. Cole, E. Zaremba, Physical Adsorption: Forces and Phenomena (Dover, Mineola, 2007), p. 80

    Google Scholar 

  26. W.A. Steele, Surf. Sci. 36, 317 (1973)

    Article  ADS  Google Scholar 

  27. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  28. G. Garberoglio, A.I. Skoulidas, J.K. Johnson, J. Phys. Chem. B 109, 13094 (2005)

    Article  Google Scholar 

  29. J.C. Liu, J.T. Culp, S. Natesakhawat, B.C. Bockrath, B. Zande, S.G. Sankar, G. Garberoglio, J.K. Johnson, J. Phys. Chem. C 111, 9305 (2007)

    Article  Google Scholar 

  30. A. Grosman, C. Ortega, Phys. Rev. B 78, 085433 (2008)

    Article  ADS  Google Scholar 

  31. Q.Y. Wang, J.K. Johnson, Mol. Phys. 95, 299 (1998)

    Article  Google Scholar 

  32. J. Jagiello, Langmuir 10, 2778 (1994)

    Article  Google Scholar 

  33. Y. Gogotsi, R.K. Dash, G. Yushin, T. Yildirim, G. Laudisio, J.E. Fischer, J. Am. Chem. Soc. 127, 16006 (2005)

    Article  Google Scholar 

  34. E. Hoffman, G. Yushin, Y. Gogotsi, M. Barsoum, Abstr. Pap.-Am. Chem. Soc. 231 (2006)

  35. A. Vishnyakov, P.I. Ravikovitch, A.V. Neimark, Langmuir 15, 8736 (1999)

    Article  Google Scholar 

  36. M.R. Swift, E. Cheng, M.W. Cole, J.R. Banavar, Phys. Rev. B 48, 3124 (1993)

    Article  ADS  Google Scholar 

  37. S.K. Bhatia, Langmuir 18, 6845 (2002)

    Article  Google Scholar 

  38. E.A. Ustinov, D.D. Do, Langmuir 20, 3791 (2004)

    Article  Google Scholar 

  39. T.X. Nguyen, S.K. Bhatia, J. Phys. Chem. B 108, 14032 (2004)

    Article  Google Scholar 

  40. P. Kowalczyk, A. Ciach, A.V. Neimark, Langmuir 24, 6603 (2008)

    Article  Google Scholar 

  41. J. Shen, P.A. Monson, Mol. Phys. 100, 2031 (2002)

    Article  ADS  Google Scholar 

  42. J. Jagiello, A. Anson, M.T. Martinez, J. Phys. Chem. B 110, 4531 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela D. Lueking.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lueking, A.D., Kim, HY., Jagiello, J. et al. Tests of Pore-Size Distributions Deduced from Inversion of Simulated and Real Adsorption Data. J Low Temp Phys 157, 410–428 (2009). https://doi.org/10.1007/s10909-009-9911-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-9911-1

Keywords

Navigation