Skip to main content
Log in

Synthesis of Cationic Amphiphilic Surface-Block Polyester Dendrimers

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Cationic amphiphilic polyester dendrimers possessing varied numbers of choline and alkyl chains on the periphery were synthesized and characterized. A combination of divergent and convergent synthetic routes was used to efficiently prepare the dendrimers. All of the amphiphiles bound DNA as determined by an ethidium bromide displacement assay, and the dendrimer that contained two choline and four alkyl chains exhibited the smallest charge ratio. Only this amphiphilic dendrimer formed a well-defined structure alone or with DNA in solution, while the other dendrimer compositions gave aggregates. Specifically, small vesicular structures of several 100 nanometers in diameter were observed with DNA, and this dendrimerplex exhibited the greatest transfection efficiency of the group. The results of this study highlight the important role that charge, hydrophobicity, size, and compaction ability play in binding and formation of DNA-dendrimer complexes and the resulting transfection efficiency.

Graphical Abstract

Cationic amphiphilic polyester dendrimers possessing different numbers of choline heads groups and myristic acid alkyl chains were synthesized and evaluated for gene transfection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.R. Safinya, K.K. Ewert, R.N. Majzoub, C. Leal, Cationic liposome-nucleic acid complexes for gene delivery and gene silencing. New J. Chem. 38, 5164–5172 (2014)

    Article  CAS  Google Scholar 

  2. M. Collins, A. Thrasher, Gene therapy: progress and predictions. Proc. R. Soc. B 282, 20143003 (2015)

    Article  Google Scholar 

  3. L. Naldini, Gene therapy returns to centre stage. Nature 526, 351 (2015)

    Article  CAS  Google Scholar 

  4. D. Luo, W.M. Saltzman, Synthetic DNA delivery systems. Nat. Biotechnol. 18, 33–37 (2000)

    Article  CAS  Google Scholar 

  5. A.V. Kabanov, P.L. Felgner, L.W. Seymour, Self-assembling complexes for gene delivery: From laboratory to clinical trial. (Willey, New York, 1998)

    Google Scholar 

  6. D. Putnam, Polymers for gene delivery across length scales. Nat. Mater. 5, 439–451 (2006)

    Article  CAS  Google Scholar 

  7. J.P. Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconj. Chem. 5, 382–389 (1994)

    Article  CAS  Google Scholar 

  8. W. Yan, L. Huang, Recent advances in liposome-based nanoparticles for antigen delivery. Polym. Rev. 47, 329–344 (2007)

    Article  CAS  Google Scholar 

  9. P.P. Karmali, A. Chaudhuri, Cationic Liposomes as non-viral carriers of gene medicines: resolved issues, open questions, and future promises. Med. Res. Rev. 27, 696–722 (2007)

    Article  CAS  Google Scholar 

  10. T.M. Reineke, M.W. Grinstaff, Designer materials for nucleic acid delivery. Mat. Res. Soc. Bull. 30, 635–639 (2005)

    Article  CAS  Google Scholar 

  11. M.A. Mintzer, E.E. Simanek, Nonviral vectors for gene delivery. Chem. Rev. 109, 259–302 (2009)

    Article  CAS  Google Scholar 

  12. B. Martin, M. Sainlos, A. Aissaoui, N. Oudrhiri, M. Hauchecorne, J.P. Vigneron, J.M. Lehn, P. Lehn, The design of cationic lipids for gene delivery. Curr. Pharm. Des. 11, 375–394 (2005)

    Article  CAS  Google Scholar 

  13. A.D. Miller, Cationic liposomes for gene therapy. Angew. Chem. Int. 37, 1768–1785 (1998)

    Article  Google Scholar 

  14. C.M. LaManna, H. Lusic, M. Camplo, T.J. McIntosh, P. Barthélémy, M.W. Grinstaff, Charge-reversal lipids, peptide-based lipids, and nucleoside-based lipids for gene delivery. Acc. Chem. Res. 45, 1026 (2012)

    Article  CAS  Google Scholar 

  15. D. Luvino, S. Khiati, K. Oumzil, P. Rocchi, M. Camplo, P. Barthélémy, Efficient delivery of therapeutic small nucleic acids to prostate cancer cells using ketal nucleoside lipid nanoparticles. J. Control. Release 172, 954–961 (2013)

    Article  CAS  Google Scholar 

  16. S.Y. Wong, J.M. Pelet, D. Putnam, Polymer systems for gene delivery-past, present, and future. Prog. Poly. Sci. 32, 799–837 (2007)

    Article  CAS  Google Scholar 

  17. T.G. Park, J.H. Jeong, S.W. Kim, Current status of polymeric gene delivery systems. Adv. Drug Del. Rev. 58, 467–486 (2006)

    Article  CAS  Google Scholar 

  18. K.W. Leong, Polymeric controlled nucleic acid delivery. MRS Bull. 30, 640–646 (2005)

    Article  CAS  Google Scholar 

  19. Y. Kakizawa, K. Kataoka, Block copolymer micelles for delivery of gene and related compounds. Adv. Drug Del. Rev. 54, 203–222 (2002)

    Article  CAS  Google Scholar 

  20. M. Guillot-Nieckowski, S. Eisler, F. Diederich, Dendritic vectors for gene transfection. New J. Chem. 31, 1111–1127 (2007)

    Article  CAS  Google Scholar 

  21. Z. Sideratou, L.A. Tziveleka, C. Kontoyianni, D. Tsiourvas, C.M. Paleos, Design of functional dendritic polymers for application as drug and gene delivery systems. Gene Ther. Mol. Biol. 10, 71–94 (2006)

    Google Scholar 

  22. S. Svenson, D.A. Tomalia, Dendrimers in biomedical application–reflections on the field. Adv. Drug Deliv. Rev. 57, 2106–2129 (2005)

    Article  CAS  Google Scholar 

  23. T. Wei, C. Chen, J. Liu, C. Liu, P. Posocco, X. Liu, Q. Cheng, S. Huo, Z. Liang, M. Fermeglia, S. Pricl, X.J. Liang, P. Rocchi, L. Peng, Anticancer drug nanomicelles formed by self-assembling amphiphilic dendrimer to combat cancer drug resistance. Proc. Natl. Acad. Sci. USA 112, 2978–2983 (2015)

    Article  CAS  Google Scholar 

  24. X. Liu, L. Peng, Dendrimer nanovectors for SiRNA delivery. Methods Mol. Biol. 1364, 127–142 (2016)

    Article  CAS  Google Scholar 

  25. T.R. Wilks, P.B. Anaïs, K. Nigel, E. Stulz, R.K. O’Reilly, Construction of DNA–polymer hybrids using intercalation interactions. Chem Commun (Camb) 50, 1338–1340 (2014)

    Article  CAS  Google Scholar 

  26. L. Gallego-Yerga, L. Blanco-Fernández, K. Urbiola, T. Carmona, G. Marcelo, J.M. Benito, F. Mendicuti, C. Tros de Ilarduya,, J.M. Ortiz Mellet, G. Fernández, Host-guest-mediated DNA templation of polycationic supramolecules for hierarchical nanocondensation and the delivery of gene material. Chemistry 17, 12093–12104 (2015)

    Article  Google Scholar 

  27. C. Ortiz Mellet, J.M. García Fernández, J.M. Benito, Cyclodextrin-based gene delivery systems. Chem. Soc. Rev. 40, 1586–1608 (2011)

    Article  Google Scholar 

  28. J. Arigon, C.A.H. Prata, M.W. Grinstaff, P. Barthélémy, Nucleic acid complexing glycosyl nucleoside-based amphiphile. Bioconj. Chem. 16, 864–872 (2005)

    Article  CAS  Google Scholar 

  29. C.C. Lee, J.A. MacKay, J.M.J. Fréchet, F.C. Szoka, Designing dendrimers for biological applications. Nat. Biotech. 23, 1517–1526 (2005)

    Article  CAS  Google Scholar 

  30. E.R. Gillies, J.M.J. Fréchet, Dendrimers and dendritic polymers in drug delivery. Drug Discov. Today 10, 35–43 (2005)

    Article  CAS  Google Scholar 

  31. H.L. Crampton, E.E. Simanek, Dendrimers as drug delivery vehicles: non-covalent interactions of bioactive compounds with dendrimers. Polym. Int. 56, 489–496 (2007)

    Article  CAS  Google Scholar 

  32. R. Esfand, D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6, 427–436 (2001)

    Article  CAS  Google Scholar 

  33. G.R. Newkome, C.D. Shreiner, Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1/2 branching motifs: an overview of the divergent procedures. Polymer 49, 1–173 (2008)

    Article  CAS  Google Scholar 

  34. D.A. Tomalia, J.M.J. Fréchet, Dendrimers and Other Dendritic Polymers. (Wiley, Chichester, 2001)

    Google Scholar 

  35. A.W. Bosman, H.M. Janssen, E.W. Meijer, About dendrimers: structure, physical properties, and applications. Chem. Rev. 99, 1665–1688 (1999)

    Article  CAS  Google Scholar 

  36. R. Rajasekhar Reddy, K.R. Raghupathin, D.A. Torres, S. Thayumanavan, Stimuli sensitive amphiphilic dendrimers. New J. Chem. 36, 340–349 (2012)

    Article  CAS  Google Scholar 

  37. D.A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17 117–132 (1985)

    Article  CAS  Google Scholar 

  38. G.R. Newkome, C.N. Moorefield, F. Vögtle, Concepts, Syntheses, Perspectives, Dendritic Molecules. (VCH, New York, 1996)

    Book  Google Scholar 

  39. D.A. Tomalia, J.M.J. Fréchet, Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Poly. Sci. Pol. Chem. 40, 2719–2728 (2002)

    Article  CAS  Google Scholar 

  40. S.M. Grayson, J.M.J. Fréchet, Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101, 3819–3868 (2001)

    Article  CAS  Google Scholar 

  41. C.J. Hawker, J.M. Frechet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990)

    Article  CAS  Google Scholar 

  42. J. Haensler, F.A. Szoka, Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconj. Chem. 4, 372 (1993)

    Article  CAS  Google Scholar 

  43. J.F. Kukowska-latallo, A.U. Bielinska, J. Johnson, R. Spinder, D.A. Tomalia, J.R. Baker, Efficient transfer of genetic material into mammalian cells using starburst polyamidoamine dendrimers. Proc. Natl. Acad. Sci. USA 93, 4897–4902 (1996)

    Article  CAS  Google Scholar 

  44. A.U. Bielinska, C. Chen, J. Johnson, J.R. Baker Jr., DNA complexing with polyamidoamine dendrimers: implications for transfection. Bioconj. Chem. 10, 843–850 (1999)

    Article  CAS  Google Scholar 

  45. Y.M. Liu, T.M. Reineke, Poly(glycoamidoamine)s for gene delivery. Structural effects on cellular internalization, buffering capacity, and gene expression. Bioconj. Chem 18, 19–30 (2007)

    Article  CAS  Google Scholar 

  46. C. Loup, M.-A. Zanta, A.-M. Caminade, J.-P. Majoral, B. Meunier, Preparation of water-soluble cationic phosphorus-containing dendrimers as DNA transfecting agents. Chemistry 5, 3644–3650 (1999)

    Article  CAS  Google Scholar 

  47. J.S. Choi, D.K. Joo, C.H. Kim, K. Kim, J.S. Park, Synthesis of barbell-like tri-block copolymers, poly(l-lysine)dendrimer-block-poly(ethylene glycol)-block-poly(l-lysine) dendrimers and its self-assembly with plasmid DNA. J. Am. Chem. Soc. 122, 474–480 (2000)

    Article  CAS  Google Scholar 

  48. D. Joester, L.M.R. Pugin, H. Heinzelmann, E. Walter, H.P. Merkle, F. Diederich, Amphiphilic dendrimers: novel self-assembling vectors for efficient gene delivery. Ang. Chem. Int. Ed. 42, 1486–1490 (2003)

    Article  CAS  Google Scholar 

  49. T. Takahashi, K. Kono, T. Itoh, N. Emi, T. Takagishi, Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconj. Chem. 14, 764–773 (2003)

    Article  CAS  Google Scholar 

  50. T. Takahashi, C. Kojima, A. Harada, K. Kono, Alkyl chain moieties of polyamidoamine dendron-bearing lipids influence their function as a nonviral gene vector. Bioconj. Chem. 18, 1349–1354 (2007)

    Article  CAS  Google Scholar 

  51. P. Kesharwani, A.K. Iyer, Recent advances in dendrimer-based nanovectors for tumor-targeted drug and gene delivery. Drug Discov. Today 20, 536–547 (2015)

    Article  CAS  Google Scholar 

  52. S.J. Cockman, C.A. Joll, Aust. J. Chem. 43, 2093–2097 (1990)

    Article  CAS  Google Scholar 

  53. P.H.J. Carlsen, K. Sorbye, T. Ulven, K. Aasbo, Synthesis of benzylidene-protected dihydroxyacetone. Acta Chim. Scand. 50, 185–187 (1996)

    Article  CAS  Google Scholar 

  54. N.R. Luman, K.A. Smeds, M.W. Grinstaff, The convergent synthesis of poly(glycerol-succinic acid) dendritic macromolecules. Chem. Eur. J. 9, 5618–5626 (2003)

    Article  CAS  Google Scholar 

  55. M.A. Carnahan, M.W. Grinstaff, Synthesis and characterization of poly(glycerol-succinic acid) dendrimers. Macromolecules 34, 7648–7655 (2001)

    Article  CAS  Google Scholar 

  56. N.R. Luman, M.W. Grinstaff, Synthesis and aqueous aggregation properties of amphiphilic surface-block dendrimers. Org. Lett. 7, 4863–4866 (2005)

    Article  CAS  Google Scholar 

  57. M.A. Carnahan, C. Middleton, J. Kim, T. Kim, M.W. Grinstaff, Hybrid dendritic-linear polyester-ethers for in situ photopolymerization. J. Am. Chem. Soc. 124 5291–5293 (2002)

    Article  CAS  Google Scholar 

  58. N.R. Luman, T. Kim, M.W. Grinstaff, Dendritic polymers composed of glycerol and succinic acid: synthetic methodologies and medical applications. Pure Appl. Chem. 76, 1375–1385 (2004)

    Article  CAS  Google Scholar 

  59. M.A. Carnahan, M.W. Grinstaff, Synthesis and characterization of polyether-ester dendrimers from glycerol and lactic acid. J. Am. Chem. Soc. 123, 2905–2906 (2001)

    Article  CAS  Google Scholar 

  60. M.A. Carnahan, M.W. Grinstaff, Synthesis of controlled layered polyester dendrimers composed of glycerol and succinic or adipic acid. Macromolecules 39, 609–616 (2006)

    Article  CAS  Google Scholar 

  61. L. Degoricija, M.A. Carnahan, C.S. Johnson, T. Kim, M.W. Grinstaff, Synthesis and characterization of bola-type amphiphilic dendritic macromolecules. Macromolecules 39, 8952–8958 (2006)

    Article  CAS  Google Scholar 

  62. L. Degoricija, C.S. Johnson, M. Wathier, T. Kim, M.W. Grinstaff, Photo cross-linkable biodendrimers as ophthalmic adhesives for central lacerations and penetrating keratoplasties. Invest. Ophthalmol. Visual Sci. 48, 2037–2042 (2007)

    Article  Google Scholar 

  63. M. Wathier, P.J. Jung, M.A. Carnahan, T. Kim, M.W. Grinstaff, Dendritic macromers as in situ polymerizing biomaterials for securing cataract incisions. J. Am. Chem. Soc. 126, 12744–12745 (2004)

    Article  CAS  Google Scholar 

  64. M. Wathier, S.M. Johnson, T. Kim, M.W. Grinstaff, Hydrogels formed by multiple peptide ligation reactions to fasten corneal transplants. Bioconj. Chem. 17, 873–876 (2006)

    Article  CAS  Google Scholar 

  65. C. Ghobril, K. Charoen, E.K. Rodriguez, A. Nazarian, M.W. Grinstaff, A dendritic thioester hydrogel based on thiol-thioester exchange as a dissolvable system for wound closure. Angew. Chem. Int. Ed. 52, 14070–14074 (2013)

    Article  CAS  Google Scholar 

  66. M.T. Morgan, Y. Nakanishi, D.J. Kroll, A.P. Griset, M.A. Carnahan, M. Wathier, N.H. Oberlies, G. Manikumar, M.C. Wani, M.W. Grinstaff, Dendrimer-encapsulated camptothecins: increased solubility, cellular uptake, and cellular retention affords enhanced anticancer activity in vitro. Cancer Res. 66, 11913–11921 (2006)

    Article  CAS  Google Scholar 

  67. M.T. Morgan, M.A. Carnahan, C.E. Immoos, A.A. Ribeiro, S. Finkelstein, S.J. Lee, M.W. Grinstaff, Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc. 125, 15485–15489 (2003)

    Article  CAS  Google Scholar 

  68. S. Söntjens, D.L. Nettles, M.A. Carnahan, L.A. Setton, M.W. Grinstaff, Biodendrimer-based hydrogel scaffolds for cartilage tissue repair. Biomacromolecules 7, 310–316 (2006)

    Article  Google Scholar 

  69. C.L. Zhao, M.A. Winnik, G. Riess, M.D. Croucher, Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 6, 514–516 (1990)

    Article  CAS  Google Scholar 

  70. M.X. Tang, C.T. Redemann, F.C. Szoka, In vitro gene delivery by degraded polyamidoamine dendrimers. Bioconj. Chem. 7, 703–714 (1996)

    Article  CAS  Google Scholar 

  71. M. Hemmati, B. Kazemi, F. Najafi, A. Zarebkohan, R. Shirkoohi, Synthesis and evaluation of a glutamic acid-modified hPAMAM complex as a promising versatile gene carrier. J. Drug Target 24, 408–421 (2016)

    Article  CAS  Google Scholar 

  72. A. Dehshahri, H. Sadeghpour, Surface decorations of poly(amidoamine) dendrimer by various pendant moieties for improved delivery of nucleic acid materials. Colloids Surf. B 132, 85–102 (2015)

    Article  CAS  Google Scholar 

  73. M.A. Kostiainen, J.G. Hardy, D.K. Smith, High-affinity multivalent DNA binding by using low-molecular-weight dendrons. Angew. Chem. Int. Ed. 44, 2556–2560 (2005)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The funding was provided by National Institutes of Health (Grant Nos. R21CA125327, R01GM27278).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark W. Grinstaff.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2216 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prata, C.A.H., Luman, N.R., Li, Y. et al. Synthesis of Cationic Amphiphilic Surface-Block Polyester Dendrimers. J Inorg Organomet Polym 28, 383–398 (2018). https://doi.org/10.1007/s10904-017-0651-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0651-4

Keywords

Navigation