Skip to main content

Advertisement

Log in

Cluster-Containing Coordination Polymers Built Upon (Cu2I2S2)m Units (m = 2, 3) and ArSCH2C≡CCH2SAr Ligands: Is the Cluster Size Dependent Upon Steric Hindrance or Ligand Rigidity?

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Two equivalents of CuI react with p-MeC6H4SCH2C≡CCH2SC6H4-p-Me (L2) to form the 2D network [(Cu4I4)(p-MeC6H4SCH2C≡CCH2SC6H4-p-Me)2] n (polymer 2) contrasting with the previously reported reaction with C6H5SCH2C≡CCH2SC6H5 (L1) which makes a 3D network [(Cu6I6)(C6H5SCH2C≡CCH2SC6H5)3] n (polymer 1) (2009, Dalton Trans. 948). The crystal structure of the latter polymer has been re-determined at 115, 155, 195, 235 and 275 K to study the impact of the recording temperature on the metric parameters, notably the Cu···Cu distances within the hexagonal prism Cu6I6 cluster. Steric hindrance between a 2D/(Cu4I4) versus 3D/(Cu6I6) appears to drive the selectivity. Upon using the ligand o-MeC6H4SCH2C≡CCH2SC6H4-o-Me (L3) with CuI, a new material (polymer 3) is formed but no X-ray structure determination was possible. From obvious steric considerations and the presence of a high energy emission characteristic of the well-known Cu4I4 cluster (absent in the Cu6I6 one), and the similarity in emission lifetime for both high and low energy emission of polymers 2 and 3, the nature of this polymer was proposed to be [(Cu4I4)(o-MeC6H4SCH2C≡CCH2SC6H4-o-Me)2] n .

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.-B. Ren, Z.-J. Qiu, J. Yan, S.-L. Zhao, C.-L. Wu, W.-P. Jia, D.-M. Han, H.-D. Liang, J. Mol. Struct. 1046, 15 (2013)

    Article  CAS  Google Scholar 

  2. J.P. Safko, J.E. Kuperstock, S.M. McCullough, A.M. Noviello, X. Li, J.P. Killarney, C. Murphy, H.H. Patterson, C.A. Bayse, R.D. Pike, Dalton Trans. 41, 11663 (2012)

    Article  CAS  Google Scholar 

  3. D. Prochowicz, I. Justyniak, A. Kornowicz, T. Kaczorowski, Z. Kaszkur, J. Lewinski, Chem. Eur. J. 18, 7367 (2012)

    Article  CAS  Google Scholar 

  4. W.-X. Zhou, J. Li, W.-X. Xu, L.-F. Yuan, D. Braga, L. Maini, F.-X. Zhang, Inorg. Chim. Acta 382, 162 (2012)

    Article  CAS  Google Scholar 

  5. S.-Z. Zhan, M. Li, X.-P. Zhou, J.-H. Wang, J.-R. Yang, D. Li, Chem. Commun. 47, 12441 (2011)

    Article  CAS  Google Scholar 

  6. I.-H. Park, S.S. Lee, Cryst. Eng. Commun. 13, 6520 (2011)

    Article  CAS  Google Scholar 

  7. Y.-J. Fan, J.-Y. Liu, S.-Q. Zang, Y. Zhou, H.-W. Hou, J. Inorg. Organomet. Polym. Mat. 21, 718 (2011)

    Article  CAS  Google Scholar 

  8. Y. Cheng, P. Xu, Y.-B. Ding, Y.-G. Yin, Cryst. Eng. Commun. 13, 2644 (2011)

    Article  CAS  Google Scholar 

  9. J. Zhang, Y.-S. Xue, Y.-Z. Li, H.-B. Du, X.-Z. You, Cryst. Eng. Commun. 13, 2578 (2011)

    Article  CAS  Google Scholar 

  10. L.-X. Wang, L. Zhao, D.-X. Wang, M.-X. Wang, J. Solid State Chem. 183, 3010 (2010)

    Article  CAS  Google Scholar 

  11. S. Hu, Z.-M. Zhang, Z.-S. Meng, Z.-J. Lin, M.-L. Tong, Cryst. Eng. Commun. 12, 4378 (2010)

    Article  CAS  Google Scholar 

  12. L.L. Li, Z.G. Ren, L. Xue, H.M. Wang, Y.J. Chang, H.X. Li, B. Wu, J.P. Lang, Sci. China Chem. 53, 2083 (2010)

    Article  CAS  Google Scholar 

  13. Y. Jin, H.J. Kim, J.Y. Lee, S.Y. Lee, W.J. Shim, S.H. Hong, S.S. Lee, Inorg. Chem. 49, 10241 (2010)

    Article  CAS  Google Scholar 

  14. A. Schindler, G. Balazs, M. Zabel, C. Groeger, R. Kalbitzer, M. Scheer, Comptes Rendus Chim. 13, 1241 (2010)

    Article  CAS  Google Scholar 

  15. E.-J. Kang, S.Y. Lee, H. Lee, S.S. Lee, Inorg. Chem. 49, 7510 (2010)

    Article  CAS  Google Scholar 

  16. S.-Q. Bai, J.Y. Kwang, L.L. Koh, D.J. Young, T.S.A. Hor, Dalton Trans. 39, 2631 (2010)

    Article  CAS  Google Scholar 

  17. D. Braga, L. Maini, P.P. Mazzeo, B. Ventura, Chem. Eur. J. 16, 1553 (2010)

    Article  CAS  Google Scholar 

  18. T.H. Kim, H. Yang, G. Park, K.Y. Lee, J. Kim, Chem. Asian J. 5, 252 (2010)

    Article  CAS  Google Scholar 

  19. X.-C. Chai, S. Zhang, Y.-P. Chen, Y.-Q. Sun, H.-H. Zhang, X.-L. Xu, Inorg. Chem. Commun. 13, 240 (2010)

    Article  CAS  Google Scholar 

  20. M. Knorr, A. Pam, A. Khatyr, C. Strohmann, M.M. Kubicki, Y. Rousselin, S.M. Aly, D. Fortin, P.D. Harvey, Inorg. Chem. 49, 5834 (2010)

    Article  CAS  Google Scholar 

  21. Z.-G. Zhao, R.-M. Yu, X.-Y. Wu, Q.-S. Zhang, Y.-M. Xie, S.W. Ng, C.-Z. Lu, Cryst. Eng. Commun. 11, 2494 (2009)

    Article  CAS  Google Scholar 

  22. L.-L. Li, H.-X. Li, Z.-G. Ren, D. Liu, Y. Chen, Y. Zhang, J.-P. Lang, Dalton Trans. 38, 8567 (2009)

    Article  Google Scholar 

  23. C. Xie, L. Zhou, W. Feng, J. Wang, W. Chen, J. Mol. Struct. 921, 132 (2009)

    Article  CAS  Google Scholar 

  24. J.Y. Lee, H.J. Kim, J.H. Jung, W. Sim, S.S. Lee, J. Am. Chem. Soc. 130, 13838 (2008)

    Article  CAS  Google Scholar 

  25. Y. Chen, H.-X. Li, D. Liu, L–.L. Liu, N.-Y. Li, H.-Y. Ye, Y. Zhang, J.-P. Lang, Cryst. Growth Des. 8, 3810 (2008)

    Article  CAS  Google Scholar 

  26. H. Zhou, P. Lin, Z.-H. Li, S.-W. Du, J. Mol. Struct. 881, 21 (2008)

    Article  CAS  Google Scholar 

  27. J.Y. Lee, S.Y. Lee, W. Sim, K.-M. Park, J. Kim, S.S. Lee, J. Am. Chem. Soc. 130, 6902 (2008)

    Article  CAS  Google Scholar 

  28. C. Ganesamoorthy, J. T. Mague, and M. S. Balakrishna (2008). Eur. J. Inorg. Chem. 596

  29. T. Li, S.-W. Du, J. Cluster Sci. 19, 323 (2008)

    Article  CAS  Google Scholar 

  30. T.H. Kim, Y.W. Shin, J.H. Jung, J.S. Kim, J. Kim, Angew. Chem. Int. Ed. 47, 685 (2008)

    Article  CAS  Google Scholar 

  31. M. Bi, G. Li, J. Hua, X. Liu, Y. Hu, Z. Shi, S. Feng, Cryst. Eng. Commun. 9, 984 (2007)

    Article  CAS  Google Scholar 

  32. M. Knorr, F. Guyon, A. Khatyr, C. Däschlein, C. Strohmann, S. M. Aly, A. S. Abd-El-Aziz, D. Fortin, and P. D. Harvey (2009). Dalton Trans. 38, 948

    Google Scholar 

  33. X. Xue, X.-S. Wang, R.-G. Xiong, X.-Z. You, B.F. Abrahams, C.-M. Che, H.-X. Ju, Angew. Chem. Int. Ed. 41, 2944 (2002)

    Article  CAS  Google Scholar 

  34. H. Ohi, Y. Tachi, T. Kunimoto, and S. Itoh (2005). Dalton Trans. 34, 3146

  35. M. Knorr, F. Guyon, A. Khatyr, C. Strohmann, M. Allain, S.M. Aly, A. Lapprand, D. Fortin, P.D. Harvey, Inorg. Chem. 51, 9917 (2012)

    Article  CAS  Google Scholar 

  36. H. N. Peindy, F. Guyon, A. Khatyr, M. Knorr, and C. Strohmann (2007). Eur. J. Inorg. Chem. 1823

  37. M. Knorr, F. Guyon, M.M. Kubicki, Y. Rousselin, S.M. Aly, P.D. Harvey, New J. Chem. 35, 1184 (2011)

    Article  CAS  Google Scholar 

  38. H.D. Hardt, Naturwissenschaften 61, 107 (1974)

    Article  CAS  Google Scholar 

  39. H.D. Hardt, A. Pierre, Z. Anorg. Allg. Chem. 402, 107 (1973)

    Article  CAS  Google Scholar 

  40. F. De Angelis, S. Fantacci, A. Sgamellotti, E. Cariati, R. Ugo, P.C. Ford, Inorg. Chem. 45, 10576 (2006)

    Article  Google Scholar 

  41. F. Parmeggiani, A. Sacchetti, J. Chem. Educ. 89, 946 (2012)

    Article  CAS  Google Scholar 

  42. P. Schulte, G. Gröger, U. Behrens, J. Organomet. Chem. 584, 1 (1999)

    Article  CAS  Google Scholar 

  43. N.J. Turro, V. Ramamurthy, J.C. Scaiano, Modern molecular photochemistry of organic molecules (University Science Book, Sausito, 2010)

    Google Scholar 

  44. M. Vitale, C.K. Ryu, W.E. Palke, P.C. Ford, Inorg. Chem. 33, 561 (1994)

    Article  CAS  Google Scholar 

  45. A. Vega, J.Y. Saillard, Inorg. Chem. 43, 4012 (2004)

    Article  CAS  Google Scholar 

  46. S. Perruchas, C. Tard, X.F. Le Goff, A. Fargues, A. Garcia, S. Khalal, J.Y. Saillard, T. Gacoin, J.P. Boilot, Inorg. Chem. 50, 10682 (2011)

    Article  CAS  Google Scholar 

  47. P.D. Harvey, M. Knorr, Macromol. Rapid Commun. 31, 808 (2010)

    Article  CAS  Google Scholar 

  48. M. Knorr, F. Guyon, Chapter 3: Luminescent oligomeric and polymeric copper coordination compounds assembled by thioether ligands, in Macromolecules containing metal and metal-like elements, Volume 10, Photophysics and photochemistry of metal-containing polymers, ed. by A.S. Abd-El Aziz, C.E. Carraher, C.U. Pittman, M. Zeldin (John Wiley & Sons, New York, 2010), pp. 89–158

    Chapter  Google Scholar 

  49. B.S. Thyagarajan, K.C. Majumdar, D.K. Bates, J. Heterocycl. Chem. 12, 59 (1975)

    Article  CAS  Google Scholar 

  50. G.M. Sheldrick, Acta Cryst. A64, 112 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the CNRS, the Natural Sciences and Engineering Research Council of Canada (NSERC), le Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT), the Centre d’ Etudes des Matériaux Optiques et Photoniques de l’Université de Sherbrooke (CEMOPUS), and the Agence National de la Recherche (ANR) for a grant of a Research Chair of Excellence.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael Knorr or Pierre D. Harvey.

Additional information

The authors dedicate this paper to the memory of Prof. Dwight A. Sweigart.

Shawkat M. Aly—On leave from Chemistry Department, Faculty of Science, Assiut University, Egypt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 735 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aly, S.M., Pam, A., Khatyr, A. et al. Cluster-Containing Coordination Polymers Built Upon (Cu2I2S2)m Units (m = 2, 3) and ArSCH2C≡CCH2SAr Ligands: Is the Cluster Size Dependent Upon Steric Hindrance or Ligand Rigidity?. J Inorg Organomet Polym 24, 190–200 (2014). https://doi.org/10.1007/s10904-013-9984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-013-9984-9

Keywords

Navigation