Skip to main content
Log in

Robust optimization with simulated annealing

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Complex systems can be optimized to improve the performance with respect to desired functionalities. An optimized solution, however, can become suboptimal or even infeasible, when errors in implementation or input data are encountered. We report on a robust simulated annealing algorithm that does not require any knowledge of the problems structure. This is necessary in many engineering applications where solutions are often not explicitly known and have to be obtained by numerical simulations. While this nonconvex and global optimization method improves the performance as well as the robustness, it also warrants for a global optimum which is robust against data and implementation uncertainties. We demonstrate it on a polynomial optimization problem and on a high-dimensional and complex nanophotonic engineering problem and show significant improvements in efficiency as well as in actual optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petroski H.: Design Paradigms. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  2. Ben-Tal A., Nemirovski A.: Robust optimization—methodology and applications. Math. Progr. 92, 453 (2002)

    Article  Google Scholar 

  3. Ben-Tal A., Nemirovski A.: Robust convex optimization. Math. Oper. Res. 23, 769 (1998)

    Article  Google Scholar 

  4. Bertsimas D., Sim M.: Tractable approximations to Robust conic optimization. Math. Progr. 107, 5 (2006)

    Article  Google Scholar 

  5. Bertsimas D., Sim M.: Robust discrete optimization and network flows. Math. Progr. 98, 49 (2003)

    Article  Google Scholar 

  6. Bertsimas D., Nohadani O., Teo K.: Robust optimization in electromagnetic scattering problems. J. Appl. Phys. 101, 074507 (2007)

    Article  Google Scholar 

  7. Levi A.F.J., Haas S.: Optimal Device Design, Chap. 6. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  8. Bertsimas, D., Nohadani, O., Teo, K.: Robust optimization for unconstrained simulation-based problems. Oper. Research (to appear 2009). doi:10.1287/opre.1090.0715

  9. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific (1995)

  10. Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific (1997)

  11. Hartmann A.K., Rieger H.: New Optimization Algorithms in Physics. Wiley-VCH, New York (2004)

    Book  Google Scholar 

  12. Kirkpatrick S., Gelatt C., Vecchi M.: Optimization by simmulated annealing. Science 220, 671 (1983)

    Article  Google Scholar 

  13. Metropolis N., Rosenbluth A., Teller M., Teller E.: Equations of state calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  Google Scholar 

  14. Geman S., Geman D.: Stochastic relaxation, Gibbs distributions, and bayesian resoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6, 721 (1984)

    Article  Google Scholar 

  15. Ingber L., Rosen B.: Genetic algorithms and very fast simulated reannealing: a comparison. J. Math. Comput. Model. 16, 87 (1992)

    Article  Google Scholar 

  16. Henrion D., Lasserre J.B.: GloptiPoly: global optimization over polynomials with matlab and SeDuMi. ACM Trans. Math. Softw. 29, 165–194 (2003)

    Article  Google Scholar 

  17. Lasserre J.B.: A moment approach to analyze zeros of triangular polynomials sets. Math. Program Ser. B 107, 275–293 (2006)

    Article  Google Scholar 

  18. Kojima, M.: Sums of squares relaxations of polynomical semidefinite programs. Research report B-397, Tokyo Institute of Technology (2003)

  19. Joannopoulos J.D., Villeneuve P.R., Fan S.: Photonic crystals: putting a new twist on light. Nature 386, 143 (1997)

    Article  Google Scholar 

  20. Geremia J.M., Williams J., Mabuchi H.: Inverse-problem approach to designing photonic crystals for cavity QED experiments. Phys. Rev. E 66, 066606 (2002)

    Article  Google Scholar 

  21. Seliger P., Mahvash M., Wang C., Levi A.: Optimization of aperiodic dielectric structures. J. Appl. Phys. 100, 034310 (2006)

    Article  Google Scholar 

  22. Ingber L.: Very fast simulated re-annealing. J. Math. Comput. Model. 12, 967 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Nohadani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertsimas, D., Nohadani, O. Robust optimization with simulated annealing. J Glob Optim 48, 323–334 (2010). https://doi.org/10.1007/s10898-009-9496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-009-9496-x

Keywords

Navigation