Skip to main content
Log in

Continuous Fluorescence Depletion Anisotropy Measurement of Protein Rotation

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Protein rotation in viscous environments can be measured by fluorescence depletion anisotropy (FDA) which combines long lifetimes of chromophore triplet states with the sensitivity of fluorescence excitation and detection. FDA achieves sensitivity well beyond that attainable by the more common technique of time-resolved phosphorescence anisotropy (TPA). We have now combined benefits of both time-domain and frequency-domain FDA into a single continuous technique (CFDA). Intensity and polarization of a single laser beam are modulated continuously according to a complex, repeating waveform. Fluorescence signals excited from triplet-forming fluorescent probes are digitized over recurring waveform periods by a high-speed signal averager. CFDA experiments typically involve substantial ground state depletion. Thus signals, unlike those of TPA, are not linear in the exciting light intensity and simple data analysis based on such linearity is not appropriate. An exact solution of the coupled diffusion and triplet production/decay equation describing CFDA within individual data points has been combined with simulated annealing optimization to extract triplet and anisotropy decay kinetics from experimental data. Related calculations compare possible excitation waveforms with respect to rotational information provided per fluorescence photon. We present CFDA results for the model system of eosin conjugates of carbonic anhydrase, BSA and immunoglobulin G in 90% glycerol at various temperatures and initial cellular results on eosin-IgE bound to 2H3 cell Type I Fcε receptors. We explore how CFDA reflects rotational parameters of heterogeneous systems and discuss challenges of extending this method to single cell microscopic measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Axelrod D (1983) Lateral motion of membrane proteins and biological functions. J Membr Biol 75:1–10

    Article  PubMed  CAS  Google Scholar 

  2. Edidin M (1974) Rotational and translational diffusion in membranes. Annu Rev Biophys Bioeng 3:179–201

    Article  PubMed  CAS  Google Scholar 

  3. Hoffmann W, Sarzala MG, Chapman D (1979) Rotational motion and evidence for oligomeric structures of sarcoplasmic reticulum Ca-activated ATPase. Proc Natl Acad Sci USA 3860–3864

  4. Cherry RJ (1978) Measurement of protein rotational diffusion in membranes by flash photolysis. Methods Enzymol 54:47–61

    Article  PubMed  CAS  Google Scholar 

  5. Cherry R (1979) Rotational and lateral diffusion of membrane proteins. Biochem Biophys Acta 559:289–327

    PubMed  CAS  Google Scholar 

  6. Greinhert R, Stark H, Steir A, Weller A (1979) E-type delayed fluorescence depletion, a technique to probe rotational correlation time in the microsecond range. J Biochem Biophys Methods 1:77–83

    Article  Google Scholar 

  7. Johnson P, Garland PB (1981) Depolarization of fluorescence depletion. A microscopic method for measuring rotational diffusion of membrane proteins on the surface of a single cell. FEBS Lett 132(2):252–256

    Article  PubMed  CAS  Google Scholar 

  8. Barisas BG, Rahman NA, Yoshida TM, Roess DA (1990) Rotation of plasma membrane proteins measured by polarized fluorescence depletion. Proc SPIE 1204:765–774

    Article  CAS  Google Scholar 

  9. Yoshida TM, Zarrin F, Barisas BG (1988) Measurement of protein rotational motion using frequency domain polarized fluorescence depletion. Biophys J 54:277–288

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yoshida TM, Barisas BG (1986) Protein rotational motion in solution measured by polarized fluorescence depletion. Biophys J 50(1):41–53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Garland PB, Moore CH (1979) Phosphorescence of protein-bound eosin and erythrosin. A possible probe for measurements of slow rotational mobility. Biom J 183:561–572

    CAS  Google Scholar 

  12. Barisas BG, Roess DA, Pecht I, Rahman NA (1990) Rotational dynamics of Fcɛ receptors on individual 2H3 RBL cells studied by polarized fluorescence depletion. Biophys J 75:671

    Google Scholar 

  13. Yoshida TM (1989) Measurement of protein rotational diffusion using time-and frequency-domain polarized fluorescence depletion. Thesis, Colorado State University

  14. Barisas BG, Zhang H (2001) Continuous fluorescence depletion anisotropy (CFDA) measurement of protein rotation. Proc SPIE 4260:140–148

    Article  CAS  Google Scholar 

  15. Jackson JD (1962) Mathematics for quantum mechanics: an introductory survey of operators, eigenvalues, and linear vector spaces, 1st edn. W.A. Benjamin, Inc., New York

  16. Kaplan W (1958) Ordinary differential equations

  17. Wegener WA, Rigler R (1984) Separation of translational and rotational contributions in solution studies using fluorescence photobleaching recovery. Biophys J 46:787–793

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 11(2):431–441

    Article  Google Scholar 

  19. Goffe WL, Ferrier GD, Rogers J (1994) Global optimization of statistical functions with simulated annealing. J Econ 60:65–99

    Article  Google Scholar 

  20. Rahman NA, Pecht I, Roess DA, Barisas BG (1992) Rotational dynamics of type I Fc epsilon receptors on individually-selected rat mast cells studied by polarized fluorescence depletion. Biophys J 61(2):334–346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cantor CR, Schimmel PR (1980) Biophysical chemistry part II: techniques for the study of biological structure and function. W.H. Freeman and Company, San Francisco, p 441

    Google Scholar 

  22. Kask P, Piksarv P, Mets U, Pooga M, Lippmaa E (1987) Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B. Eur Biophys J 14:257–261

    Article  PubMed  CAS  Google Scholar 

  23. Yguerabide J, Epstein HF, Stryer L (1970) Segmental flexibility in an antibody molecule. J Mol Biol 51(3):573–590

    Article  PubMed  CAS  Google Scholar 

  24. Riddiford CL, Jennings BR (1967) Kerr effect study of the aqueous solutions of three globular proteins. Biopolymers 5:557–571

    Article  Google Scholar 

  25. Lovejoy C, Holowka DA, Cathou RE (1977) Nanosecond fluorescence spectroscopy of pyrenebutyrate-anti-pyrene antibody complexes. Biochemistry 16(16):3668–3672

    Article  PubMed  CAS  Google Scholar 

  26. Chan LM, Cathou RE (1977) The role of the inter-heavy chain disulfide bond in modulating the flexibility of immunoglobulin G antibody. J Mol Biol 112(4):653–656

    Article  PubMed  CAS  Google Scholar 

  27. Ferrer ML, Duchowicz R, Carrasco B, de la Torre JG, Acuna AU (2001) The conformation of serum albumin in solution: a combined phosphorescence depolarization-hydrodynamic modeling study. Biophys J 80(5):2422–2430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Korchuganov DS, Gagnidze IE, Tkach EN, Schulga AA, Kirpichnikov MP, Arseniev AS (2004) Determination of protein rotational correlation time from NMR relaxation data at various solvent viscosities. J Biomol NMR 30(4):431–442

    Article  PubMed  CAS  Google Scholar 

  29. Yao J, McStay D, Rogers AJ, Quinn PJ (1992) A comparative study of rotational relaxations of an eosin-protein complex using delayed fluorescence and phosphorescence. J Mod Opt 39(11):2363–2373

    Article  CAS  Google Scholar 

  30. Priev A, Almagor A, Yedgar S, Gavish B (1996) Glycerol decreases the volume and compressibility of protein interior. Biochemistry 35(7):2061–2066

    Article  PubMed  CAS  Google Scholar 

  31. perrin F (1936) Mouvement brownien d’un ellipsoide (II). Rotation libre et depolarisation des fluorescences. Translation et diffusion de molecules ellipsoidales. J Phys Radium 7(1):1–11

    Article  CAS  Google Scholar 

  32. Monkos K, Turczynski B (1991) Determination of the axial-ratio of globular-proteins in aqueous-solution using viscometric measurements. Int J Biol Macromol 13(6):341–344

    Article  PubMed  CAS  Google Scholar 

  33. Squire PG, Moser P, O’Konski CT (1968) The hydrodynamic properties of bovine serum albumin monomer and dimer. Biochemistry 7(12):4261–4272

    Article  PubMed  CAS  Google Scholar 

  34. McCoy LF, Wong KP (1981) Renaturation of bovine erythrocyte carbonic anhydrase-B denatured by acid, heat, and detergent. Biochemistry 20(11):3062–3067

    Article  PubMed  CAS  Google Scholar 

  35. Tilley L, Sawyer WH, Morrison JR, Fidge NH (1988) Rotational diffusion of human lipoproteins and their receptors as determined by time-resolved phosphorescence anisotropy. J Biol Chem 263(33):17541–17547

    PubMed  CAS  Google Scholar 

  36. Londo TR, Rahman NA, Roess DA, Barisas BG (1993) Fluorescence depletion measurements in various experimental geometries provide true emission and absorption anisotropies for the study of protein rotation. Biophys Chem 48(2):241–257

    Article  PubMed  CAS  Google Scholar 

  37. Song J, Hagen GM, Roess DA, Pecht I, Barisas BG (2002) The mast cell function-associated antigen and its interactions with the type I Fcepsilon receptor. Biochemistry 41(3):881–889

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The Authors are grateful to Professor Israel Pecht of the Weizmann Institute of Science, Rehovot, Israel, for his kind gift of the A2 IgE used in the preliminary cellular studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. George Barisas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Song, J., Pace, J. et al. Continuous Fluorescence Depletion Anisotropy Measurement of Protein Rotation. J Fluoresc 28, 533–542 (2018). https://doi.org/10.1007/s10895-018-2214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-018-2214-7

Keywords

Navigation