Skip to main content
Log in

Detection of Target Proteins by Fluorescence Anisotropy

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Understanding molecular interactions is critical to understanding most biological mechanisms of cells and organisms. In the case of small molecule–protein interactions, many molecules have significant biological activity through interactions with unknown target proteins and by unknown modes of action. Identifying these target proteins is of significant importance and ongoing work in our laboratories is developing a technique termed Dynamic Isoelectric Anisotropy Binding Ligand Assay (DIABLA) to meet this need. Work presented in this manuscript aims to characterize the fundamental parameters affecting the use of fluorescence anisotropy to detect target proteins for a given ligand. Emphasis is placed on evaluating the use of fluorescence anisotropy as a detection mechanism, including optimization factors that affect the protein detection limit. Effects of ligand concentration, pH, and nonspecific binding are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Steen J et al (2006) High-throughput protein purification using an automated set-up for high-yield affinity chromatography. Protein Expr Purif 46(2):173–178

    Article  PubMed  CAS  Google Scholar 

  2. Yoo MJ, Hage DS (2009) Evaluation of silica monoliths in affinity microcolumns for high-throughput analysis of drug–protein interactions. J Sep Sci 32(15–16):2776–2785

    Article  PubMed  CAS  Google Scholar 

  3. Vaya I et al (2010) Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chem Phys Lett 486(4–6):147–153

    Article  CAS  Google Scholar 

  4. Cuatrecasas P, Wilchek M, Anfinsen CB (1968) Selective enzyme purification by affinity chromatography. Proc Natl Acad Sci U S A 61(2):636–643

    Article  PubMed  CAS  Google Scholar 

  5. Jones RB et al (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439(7073):168–174

    Article  PubMed  CAS  Google Scholar 

  6. Cassulis P, Magasic MV, DeBari VA (1991) Ligand affinity chromatographic separation of serum IgG on recombinant protein G-silica. Clin Chem 37(6):882–886

    PubMed  CAS  Google Scholar 

  7. Jonker N et al (2008) Screening of protein–ligand interactions using dynamic protein-affinity chromatography solid-phase extraction-liquid chromatography-mass spectrometry. J Chromatogr A 1205(1–2):71–77

    PubMed  CAS  Google Scholar 

  8. Kaushansky A et al (2010) Quantifying protein–protein interactions in high throughput using protein domain microarrays. Nat Protoc 5(4):773–790

    Article  PubMed  CAS  Google Scholar 

  9. Ahmed FE et al (2010) Surface plasmon resonance (SPR) spectrometry as a tool to analyze nucleic acid–protein interactions in crude cellular extracts. Cancer Genomics Proteomics 7(6):303–309

    PubMed  CAS  Google Scholar 

  10. Pan T, Xiao ZD, Huang PM (2009) Characterize the interaction between polyethylenimine and serum albumin using surface plasmon resonance and fluorescence method. J Lumin 129(7):741–745

    Article  CAS  Google Scholar 

  11. Lamichhane R et al (2010) Single-molecule FRET of protein–nucleic acid and protein–protein complexes: surface passivation and immobilization. Methods 52(2):192–200

    Article  PubMed  CAS  Google Scholar 

  12. Ji ZS, Yao ZX, Liu ML (2009) Saturation transfer difference nuclear magnetic resonance study on the specific binding of ligand to protein. Anal Biochem 385(2):380–382

    Article  PubMed  CAS  Google Scholar 

  13. Osborne MA (2005) Real-time dipole orientational imaging as a probe of ligand–protein interactions. J Phys Chem B 109(38):18153–18161

    Article  PubMed  CAS  Google Scholar 

  14. Barbarakis MS, Bachas LG (1991) Isoelectric focusing electrophoresis of protein–ligand conjugates: effect of the degree of substitution. Clin Chem 37(1):87–90

    PubMed  CAS  Google Scholar 

  15. Sreekumar A et al (2001) Profiling of cancer cells using protein microarrays: discovery of novel radiation-regulated proteins. Cancer Res 61(20):7585–7593

    PubMed  CAS  Google Scholar 

  16. Stoevesandt O, Taussig MJ, He M (2009) Protein microarrays: high-throughput tools for proteomics. Expert Rev Proteomics 6(2):145–157

    Article  PubMed  CAS  Google Scholar 

  17. Montgomery R, Jia X, Tolley L (2006) Dynamic isoelectric focusing for proteomics. Anal Chem 78(18):6511–6518

    Article  PubMed  CAS  Google Scholar 

  18. Montgomery R et al (2008) DIABLA: a new screening method for the discovery of protein targets. J Proteome Res 7(10):4594–4597

    Article  PubMed  CAS  Google Scholar 

  19. Vaasa A et al (2009) High-affinity bisubstrate probe for fluorescence anisotropy binding/displacement assays with protein kinases PKA and ROCK. Anal Biochem 385(1):85–93

    Article  PubMed  CAS  Google Scholar 

  20. Bonarek P et al (2008) Quantitative analysis of the ternary complex of RNA polymerase, cyclic AMP receptor protein and DNA by fluorescence anisotropy measurements. Acta Biochim Pol 55(3):537–547

    PubMed  CAS  Google Scholar 

  21. Jameson DM, Ross JA (2010) Fluorescence polarization/anisotropy in diagnostics and imaging. Chem Rev 110(5):2685–2708

    Article  PubMed  CAS  Google Scholar 

  22. Valle BC et al (2007) Understanding chiral molecular micellar separations using steady-state fluorescence anisotropy, capillary electrophoresis, and NMR. Langmuir 23(2):425–435

    Article  PubMed  CAS  Google Scholar 

  23. Hey T, Lipps G, Krauss G (2001) Binding of XPA and RPA to damaged DNA investigated by fluorescence anisotropy. Biochemistry 40(9):2901–2910

    Article  PubMed  CAS  Google Scholar 

  24. Callaway K, Rainey MA, Dalby KN (2005) Quantifying ERK2-protein interactions by fluorescence anisotropy: PEA-15 inhibits ERK2 by blocking the binding of DEJL domains. Biochim Biophys Acta 1754(1–2):316–323

    PubMed  CAS  Google Scholar 

  25. Qiao Y et al (2011) Enhanced fluorescence anisotropy assay for human cardiac troponin I and T detection. J Fluoresc 21(6):2101–2110

    Article  PubMed  CAS  Google Scholar 

  26. Goltsov A, Lebedeva G, Humphery-Smith I, Goltsov G, Demin O, Goryanin I (2010) In silico screening of nonsteroidal anti-inflammatory drugs and their combined action on prostaglandin H synthase-1. Pharmaceuticals 3:2059–2081

    Article  CAS  Google Scholar 

  27. Hong Y et al (2008) Population pharmacodynamic modelling of aspirin- and Ibuprofen-induced inhibition of platelet aggregation in healthy subjects. Clin Pharmacokinet 47(2):129–137

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge support from National Science Foundation (DBI-0754696 and CHE-0719185). Additional support was provided by Merck & Co., Southern Illinois University at Carbondale and Materials Technology Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew E. McCarroll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, L., Clifford, B., Graybeal, L. et al. Detection of Target Proteins by Fluorescence Anisotropy. J Fluoresc 23, 881–888 (2013). https://doi.org/10.1007/s10895-013-1194-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1194-x

Keywords

Navigation