Skip to main content
Log in

Ethynylated Triphenylamine Monoboronic acid Chemosensors: Experimental and Theoretical Studies

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

New ethynylated triphenylamine boronic acid sensors 1 and 2 were designed and the photophysical properties, as well as the binding with tartaric acid and mandelic acid were studied. We found the emission intensity of the sensors is sensitive to the polarity of the solvents and the emission of sensor 2 is sensitive to protic solvents. Theoretical calculations on the low-lying excited states of these sensors predicted d-PET effect. Experimental observations show either a-PET effect or no significant PET effect for the sensors. The sensitivity of the emission of the sensors toward solvent polarity is used to rationalize the observed emission intensity-pH profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. James TD (2007) Saccharide-selective boronic acid based Photoinduced Electron Transfer (PET) fluorescent sensors. Top Curr Chem 277:107–152

    Article  CAS  Google Scholar 

  2. Fujita N, Shinkai S, James TD (2008) Boronic acids in molecular self-assembly. Chem Asian J 3:1076–1091

    Article  CAS  PubMed  Google Scholar 

  3. James TD, Shinkai S (2002) Artificial receptors as chemosensors for carbohydrates. Top Curr Chem 218:159–200

    Article  CAS  Google Scholar 

  4. Zhu L, Shabbir SH, Gray M, Lynch VM, Sorey S, Anslyn EV (2006) A structural investigation of the N-B interaction in an o-(N, N-Dialkylaminomethyl)arylboronate system. J Am Chem Soc 128:1222–1232

    Article  CAS  PubMed  Google Scholar 

  5. Tan W, Zhang D, Wang Z, Liu C, Zhu D (2007) 4-(N, N-Dimethylamine)benzonitrile (DMABN) derivatives with boronic acid and boronate groups: new fluorescent sensors for saccharides and fluoride ion. J Mater Chem 17:1964–1968

    Article  CAS  Google Scholar 

  6. Jin S, Li M, Zhu C, Tran V, Wang B (2008) Computer-based de novo design, synthesis, and evaluation of boronic acid-based artificial receptors for selective recognition of dopamine. ChemBioChem 9:1431–1438

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Jin S, Akol S, Wang B (2007) Design and synthesis of long-wavelength fluorescent boronic acid reporter compounds. Eur J Org Chem 2091–2099.

  8. DiCesare N, Adhikari DP, Heynekamp JJ, Heagy MD, Lakowicz JR (2002) Spectroscopic and photophysical characterization of fluorescent chemosensors for monosaccharides based on N-Phenylboronic acid derivatives of 1, 8-Naphthalimide. J Fluoresc 12:147–154

    Article  CAS  Google Scholar 

  9. Zhang L, Kerszulis JA, Clark RJ, Ye T, Zhu L (2009) Catechol boronate formation and its electrochemical oxidation. Chem Commun (16):2151–2153

  10. Trupp S, Schweitzer A, Mohr GJ (2006) A fluorescent water-soluble naphthalimide-based receptor for saccharides with highest sensitivity in the physiological pH range. Org Biomol Chem 4:2965–2968

    Article  CAS  PubMed  Google Scholar 

  11. Wang Z, Zhang D, Zhu D (2005) A new saccharide sensor based on a tetrathiafulvalene anthracene dyad with a boronic acid group. J Org Chem 70:5729–5732

    Article  CAS  PubMed  Google Scholar 

  12. Sun X-Y, Liu B (2005) The fluorescence sensor for saccharide based on internal conversion. Luminescence 20:331–333

    Article  CAS  PubMed  Google Scholar 

  13. Xu W, Huang Z, Zheng Q (2008) Highly efficient fluorescent sensing for a-hydroxy acids with C3-symmetric boronic acid-based receptors. Tetrahedron Lett 49:4918–4921

    Article  CAS  Google Scholar 

  14. Davis CJ, Lewis PT, Billodeaux DR, Fronczek FR, Escobedo JO, Strongin RM (2001) Solid-state supramolecular structures of resorcinol—arylboronic acid compounds. Org Lett 3:2443–2445

    Article  CAS  PubMed  Google Scholar 

  15. Manimala JC, Wiskur SL, Ellington AD, Anslyn EV (2004) Tuning the specificity of a synthetic receptor using a selected nucleic acid receptor. J Am Chem Soc 126:16515–16519

    Article  CAS  PubMed  Google Scholar 

  16. Collins BE, Sorey S, Hargrove AE, Shabbir SH, Lynch VM, Anslyn EV (2009) Probing intramolecular B-N interactions in ortho-aminomethyl arylboronic acids. J Org Chem 74:4055–4060

    Article  CAS  PubMed  Google Scholar 

  17. Gamsey S, Miller A, Olmstead MM, Beavers CM, Hirayama LC, Pradhan S, Wessling RA, Singaram B (2007) Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and —hydroxycarboxylates. J Am Chem Soc 129:1278–1286

    Article  CAS  PubMed  Google Scholar 

  18. Kawanishi T, Romey MA, Zhu P, Holody MZ, Shinkai S (2004) A study of boronic acid based fluorescent glucose sensors. J Fluoresc 14:499–512

    Article  CAS  PubMed  Google Scholar 

  19. Cappuccio FE, Suri JT, Cordes DB, Wessling RA, Singaram B (2004) Evaluation of pyranine derivatives in boronic acid based saccharide sensing: Significance of charge interaction between dye and quencher in solution and hydrogel. J Fluoresc 14:521–533

    Article  CAS  PubMed  Google Scholar 

  20. Pu L (2004) Fluorescence of organic molecules in chiral recognition. Chem Rev 104:1687–1716

    Article  CAS  PubMed  Google Scholar 

  21. Qin H, He Y, Hu C, Chen Z, Hu L (2007) Enantioselective fluorescent sensor for dibenzoyl tartrate anion based on chiral binaphthyl derivatives bearing an amino acid unit. Tetrahedron Asymmetr 18:1769–1774

    Article  CAS  Google Scholar 

  22. Zhu K, Zhang M, Wang F, Li N, Li S, Huang F (2008) Improved complexation between dibenzo-24-crown-8 derivatives and dibenzylammonium salts by ion-pair recognition. New J Chem 32:1827–1830

    Article  CAS  Google Scholar 

  23. He C, Shi Z, Zhou Q, Li S, Li N, Huang F (2008) Syntheses of cis- and trans-Dibenzo-30-Crown-10 derivatives via regioselective routes and their complexations with paraquat and diquat. J Org Chem 73:5872–5880

    Article  CAS  PubMed  Google Scholar 

  24. Xu X-N, Wang L, Wang G-T, Lin J-B, Li G-B, Jiang X-K, Li Z-T (2009) Hydrogen-bonding-mediated dynamic covalent synthesis of macrocycles and capsules: new receptors for aliphatic ammonium ions and the Formation of Pseudo[3]rotaxanes. Chem Eur J 15:5763–5774

    Article  CAS  Google Scholar 

  25. Wickramasinghe Y, Yang Y, Spencer SA (2004) Current problems and potential techniques in in vivo glucose monitoring. J Fluoresc 14:513–520

    Article  CAS  PubMed  Google Scholar 

  26. Moschou EA, Sharma BV, Deo SK, Daunert S (2004) Fluorescence glucose detection: advances toward the ideal in vivo biosensor. J Fluoresc 14:535–547

    Article  CAS  PubMed  Google Scholar 

  27. Schäferling M, Wu M, Wolfbeis OS (2004) Time-resolved fluorescent imaging of glucose. J Fluoresc 14:561–568

    Article  PubMed  Google Scholar 

  28. Badugu R, Lakowicz JR, Geddes CD (2004) Ophthalmic glucose monitoring using disposable contact lenses—a review. J Fluoresc 14:617–613

    Article  CAS  PubMed  Google Scholar 

  29. Yang XP, Lee MC, Sartain F, Pan XH, Lowe CR (2006) Designed boronate ligands for glucose-selective holographic sensors. Chem Eur J 12:8491–8497

    Article  CAS  Google Scholar 

  30. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  31. James TD, Samankumara Sandanayake KRA, Iguchi R, Shinkai S (1995) Novel saccharide-photoinduced electron transfer sensors based on the interaction of boronic acid and amine. J Am Chem Soc 117:8982–8987

    Article  CAS  Google Scholar 

  32. Zhao J, Davidson MG, Mahon MF, Kociok-Kohn G, James TD (2004) An enantioselective fluorescent sensor for sugar acids. J Am Chem Soc 126:16179–16186

    Article  CAS  PubMed  Google Scholar 

  33. Zhao J, James TD (2005) An enantioselective fluorescent sensor for sugar acids. J Mater Chem 15:2896–2901

    Article  CAS  Google Scholar 

  34. Chi L, Zhao J, James TD (2008) Chiral mono boronic acid as fluorescent enantioselective sensor for Monoα-hydroxyl carboxylic acids. J Org Chem 73:4684–4687

    Article  CAS  PubMed  Google Scholar 

  35. Cao HS, Diaz DI, DiCesare N, Lakowicz JR, Heagy MD (2002) Monoboronic acid sensor that displays anomalous fluorescence sensitivity to glucose. Org Lett 4:1503–1505

    Article  CAS  PubMed  Google Scholar 

  36. Jin S, Wang J, Li M, Wang B (2008) Synthesis, evaluation, and computational studies of naphthalimide-based long-wavelength fluorescent boronic acid reporters. Chem Eur J 14:2795–2804

    Article  CAS  Google Scholar 

  37. James TD, Shinmori H, Shinkai S (1997) Novel fluorescence sensor for ‘small’ saccharides. Chem Commun 71

  38. Gao X, Zhang Y, Wang B (2003) New boronic acid fluorescent reporter compounds. 2. A naphthalene-based on — off sensor functional at physiological pH. Org Lett 5:4616–4618

    Google Scholar 

  39. Zhao J, Fyles TM, James TD (2004) Chiral Binol—Bisboronic acid as fluorescence sensor for sugar acids. Angew Chem Int Ed 43:3461–3464

    Article  CAS  Google Scholar 

  40. Zhao J, James TD (2005) Enhanced fluorescence and chiral discrimination for tartaric acid in a dual fluorophore boronic acid receptor. Chem Commun 1889–1891.

  41. Liang X, James TD, Zhao J (2008) 6, 6′-Bis-substituted BINOL boronic acids as enantioselective and chemselective fluorescent chemosensors for D-sorbitol. Tetrahedron 64:1309–1315

    Article  CAS  Google Scholar 

  42. Han F, Chi L, Liang X, Ji S, Liu S, Zhou F, Wu Y, Han K, Zhao J, James TD (2009) 3, 6-Disubstituted Carbazole-Based bisboronic acids with unusual fluorescence transduction as enantioselective fluorescent chemosensors for tartaric acid. J Org Chem 74:1333–1336

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Chi L, Ji S, Wu Y, Song P, Han K, Guo H, James TD, Zhao J (2009) Rational design of d-PeT Phenylethynylated-Carbazole monoboronic acid fluorescent sensors for the selective detection of α-Hydroxyl carboxylic acids and monosaccharides. J Am Chem Soc 131:17452–17463

    Article  CAS  PubMed  Google Scholar 

  44. Valeur B (2001) Molecular fluorescence: principles and applications. Wiley—VCH Verlag GmbH, New York

    Google Scholar 

  45. Ji S, Yang J, Yang Q, Liu S, Chen M, Zhao J (2009) Tuning the intramolecular charge transfer of alkynylpyrenes: effection photophysical properties and its application in design of OFF-ON fluorescent thiol probes. J Org Chem 74:4855–4865

    Article  CAS  PubMed  Google Scholar 

  46. Zhao G-J, Liu J-Y, Zhou J-C, Han K-L (2007) Site-selective photoinduced electron transfer from alcoholic solvents to the chromophore facilitated by hydrogen bonding: a new fluorescence quenching mechanism. J Phys Chem B 111:8940–8945

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Feng J, Ren A (2008) Theoretical study on photophysical properties of Bis-Dipolar Diphenylamino-endcapped oligoarylfluorenes as light-emitting materials. J Phys Chem A 112:3157–3164

    Article  CAS  PubMed  Google Scholar 

  48. Li M-X, Zhang H-X, Zhou X, Pan Q-J, Fu H-G, Sun C-C (2007) Theoretical studies of the electronic structure and spectroscopic properties of [Ru(Htcterpy)(NCS)3]3−. Eur J Inorg Chem 2171–2180

  49. Li M-X, Zhou X, Xia B-H, Zhang H-X, Pan Q-J, Liu T, Fu H-G, Sun C-C (2008) Theoretical studies on structures and spectroscopic properties of photoelectrochemical cell ruthenium sensitizers, [Ru(Hmtcterpy)(NCS)3]n− (m = 0, 1, 2, and 3; n = 4, 3, 2, and 1). Inorg Chem 47:2312–2324

    Article  CAS  PubMed  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision D.01. Gaussian Inc., Wallingford

    Google Scholar 

  51. Ueno T, Urano Y, Setsukinai K, Takakusa H, Kojima H, Kikuchi K, Ohkubo K, Fukuzumi S, Nagano T (2004) Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126:14079–14085

    Article  CAS  PubMed  Google Scholar 

  52. Tucker SH (1926) Iodination in the carbaxole series. J Chem Soc 546–553

  53. Zhao G, Chen R, Sun M, Liu J, Li G, Gao Y, Han K, Yang X, Sun L (2008) Photoinduced intramolecular charge transfer and S2 fluorescence in Thiophene-π-conjugated donor—acceptor systems: experimental and TDDFT studies. Chem Eur J 14:6935–6947

    Article  CAS  Google Scholar 

  54. Han F, Chi L, Wu W, Liang X, Fu M, Zhao J (2008) Environment sensitive phenothiazine dyes strongly fluorescence in protic solvents. J Photochem Photobiol A Chem 196:10–23

    Article  CAS  Google Scholar 

  55. Sunahara H, Urano Y, Kojima H, Nagano T (2007) Design and synthesis of a library of BODIPY-Based environmental polarity sensors utilizing photoinduced electron-transfer-controlled fluorescence ON/OFF switching. J Am Chem Soc 129:5597–5604

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NSFC (20642003, 40806042, 20634040 and 20972024), Ministry of Education (SRF for ROCS, SRFDP-200801410004 and NCET-08-0077), PCSIRT (IRT0711), State Key Laboratory of Fine Chemicals (KF0710 and KF0802), State Key Laboratory of Chemo/Biosensing and Chemometrics (2008009), the Education Department of Liaoning Province (2009 T015) and Dalian University of Technology (SFDUT07005 and 1000-893394) for financial support. We are grateful to RS (UK) and NSFC (China) for the Cost-Share program and the annual CASE symposium.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huimin Guo or Jianzhang Zhao.

Electronic supplementary material

pH titration curves and DFT/TDDFT calculation results of sensor 2.

ESM 1

(DOC 751 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chi, L., Wu, Y., Zhang, X. et al. Ethynylated Triphenylamine Monoboronic acid Chemosensors: Experimental and Theoretical Studies. J Fluoresc 20, 1255–1265 (2010). https://doi.org/10.1007/s10895-010-0677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0677-2

Keywords

Navigation