Skip to main content

Advertisement

Log in

Studying the Interaction of Pirarubicin with DNA and Determining Pirarubicin in Human Urine Samples: Combining Excitation -Emission Fluorescence Matrices with Second-order Calibration Methods

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, UV–vis spectroscopy and fluorescence were combined to study the binding of Calf thymus DNA (ct-DNA) with the anthacycline antibiotic drug pirarubicin (THP). Ethidium bromide (EB) as the fluorescence probe was used to study the competitive binding interactions of THP with DNA by excitation -emission fluorescence matrices (EEFMs) coupled with the parallel factor analysis (PARAFAC) and the alternating normalization-weighted error algorithm (ANWE) with the second-order advantage. All the results conformed that THP mainly bound with DNA by intercalation. Meanwhile, the two second-order calibration methods have been successfully applied to quantify THP in urine samples. Figures of merit were applied to compare the performance of the two methods. The results presented in this work showed that both the PARAFAC and ANWE methods were the convincing way to be applied in the complex biological systems even in the presence of uncalibrated interferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y (1982) 4-O-tetrahydropyranyladr-amycin as a potential new antitumor agent. Cancer Res 42(4):1462–1467

    CAS  PubMed  Google Scholar 

  2. Kimura K (1986) A phase II study of (2″R) - 4-O-tetrahydropyranyladriamycin (THP) in patients with hematological malignancies. Jpn J Cancer Chemother 13(2):368–375

    CAS  Google Scholar 

  3. Enomoto K, Abe O, Tominaga T, Abe R, Iino Y, Koyama H, Fujimoto M, Nomura Y (1990) Clinical study of pirarubicin for breast cancer in Japan. Clinical Study Group of THP for Breast Cancer in Japan. J Clin Oncol 13(Suppl 1):S48–S53

    Google Scholar 

  4. Izumi N, Goto Y (1990) A clinical trial of transarterial chemoembolization for hepatocellular carcinoma using 4′-O-tetrahydropyranyladriamycin. Jpn J Cancer Chemother 17(7):1303–1307

    CAS  Google Scholar 

  5. Carrasco C, Joubert A, Tardy C, Maestre N, Cacho M, Braña MF, Bailly C (2003) DNA sequence recognition by bispyrazinonaphthalimides antitumor agents. Biochemistry 42(40):11751–11761. doi:10.1021/bi034637h

    Article  CAS  PubMed  Google Scholar 

  6. Erdem A, Ozsoz M (2001) Interaction of the anticancer drug epirubicin with DNA. Anal Chim Acta 437:107–114. doi:10.1016/S0003-2670(01)00942-4

    Article  CAS  Google Scholar 

  7. Pigram WJ, Fuller W, Hamilton LD (1972) Stereochemistry of intercalation: interaction of daunomycin with DNA. Nat New Biol 235(53):17–19. doi:10.1038/235017a0

    Article  CAS  PubMed  Google Scholar 

  8. Momparler RL, Karon M, Siegel SE, Avila F (1976) Effects of adriamycin on DNA, RNA and protein synthesis in cell-free systems and intact cells. Cancer Res 36(8):2891–2895

    CAS  PubMed  Google Scholar 

  9. Tewey KM, Rowe TC, Yang L, Halligan BD, Lui LF (1984) Adriamycin-induced DNA damage mediated by mammalian DNA. topoisomerase II. Science 226(4673):466–468. doi:10.1126/science.6093249

    Article  CAS  PubMed  Google Scholar 

  10. Schneider E, Hsiang YH, Lui LF (1990) DNA topoisomerases as anticancer drug targets. Adv Pharmacol 21(1):149–183. doi:10.1016/S1054-3589(08)60342-7

    Article  CAS  PubMed  Google Scholar 

  11. Sander M, Hsieh TS (1983) Double stranded DNA cleavage by type II DNA topoisomerase from Drosophila melanogaster. J Biol Chem 258(13):8421–8428

    CAS  PubMed  Google Scholar 

  12. Hutchins RA, Crenshaw JM, Graves DE, Denny WA (2003) Influence of substituent modifications on DNA binding energetics of acridine-based anticancer agents. Biochemistry 42(46):13754–13761. doi:10.1021/bi035434w

    Article  CAS  PubMed  Google Scholar 

  13. Lah J, Bezan M, Vesnaver G (2001) Thermodynamics of berenil binding to poly[d(AT)] poly[d(AT)] and poly[d(A)]poly[d(T)] duplexes. Acta Chim Slov 48(3):289–308

    CAS  Google Scholar 

  14. Su H, Williams P, Thompson M (1995) Platinum anticancer drug binding to DNA detected by thickness-shear–mode acoustic wave sensor. Anal Chem 67(5):1010–1013. doi:10.1021/ac00101a033

    Article  CAS  PubMed  Google Scholar 

  15. Aslanoglu M, Houlton A, Horrocks BR (1998) Functionalised monolayer for nucleic acid immobilisation on gold surfaces and metal complex binding studies. Analyst (Lond.) 123(4):753–757. doi:10.1039/a706897b

    Article  CAS  Google Scholar 

  16. David WM, Brodbelt J, Kerwin SM, Thomas PW (2002) Investigation of quadruplex oligonucleotide-drug interactions by electrospray ionization mass spectrometry. Anal Chem 74(9):2029–2033. doi:10.1021/ac011283w

    Article  CAS  PubMed  Google Scholar 

  17. Van Berkel GJ (2003) An overview of some recent developments in ionization methods for mass spectrometry. Eur J Mass Spectrom (Chichester, Eng.) 9(6):539–562. doi:10.1255/ejms.586

    Article  Google Scholar 

  18. Rodriguez M, Bard AJ (1990) Electrochemical studies of the interaction of metal chelates with DNA. 4. Voltammetric and electrogenerated chemiluminescent studies of the interaction of tris(2,2′-bipyridine)osmium(II) with DNA. Anal Chem 62(24):2658–2662. doi:10.1021/ac00223a002

    Article  CAS  PubMed  Google Scholar 

  19. Arkin MR, Stemp EDA, Turro C, Barton JK (1996) Luminescence quenching in supramolecular systems: A comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. J Am Chem Soc 118(9):2267–2274. doi:10.1021/ja9532998

    Article  CAS  Google Scholar 

  20. Okhonin V, Krylova SM, Krylov SN (2004) Nonequilibrium capillary electrophoresis of equilibrium mixtures, mathematical model. Anal Chem 76(4):1507–1512. doi:10.1021/ac035259p

    Article  CAS  PubMed  Google Scholar 

  21. Berezovski M, Krylov SN (2005) Thermochemistry of protein − DNA interaction studied with temperature-vontrolled nonequilibrium capillary electrophoresis of equilibrium mixtures. Anal Chem 77(5):1526–1529. doi:10.1021/ac048577c

    Article  CAS  PubMed  Google Scholar 

  22. Reynisson J, Schuster GB, Howerton SB, Williams LD, Barnett RN, Cleveland CL, Landman U, Harrit N, Chaires JB (2003) Intercalation of trioxatriangulenium ion in DNA: binding, electron transfer, X-ray crystallography, and electronic structure. J Am Chem Soc 125(8):2072–2083. doi:10.1021/ja0211196

    Article  CAS  PubMed  Google Scholar 

  23. McGhee JD, Von Hippel PH (1974) Theoretical aspects of DNA-protein interactions - cooperative and non-cooperative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol 86(2):469–489. doi:10.1016/0022-2836(74)90031-X

    Article  CAS  PubMed  Google Scholar 

  24. Pachter JA, Huang CH, DuVernay VH, Prestayko AW, Crooke ST (1982) Viscometric and fluorometric studies of DNA interactions of several new anthracyclines. Biochemistry 21(7):1541–1547. doi:10.1021/bi00536a012

    Article  CAS  PubMed  Google Scholar 

  25. Mazerska Z, Dziegielewski J, Konopa J (2001) Enzymatic activation of a new antitumor drug, 5-diethylaminoethylamino-8-hydroxyimidazoacridinone, C-1311, observed after its intercalation into DNA. Biochem Pharmacol 61(6):685–694. doi:10.1016/S0006-2952(01)00527-5

    Article  CAS  PubMed  Google Scholar 

  26. Wang B, Bouffier L, Demeunynck M, Mailley P, Roget A, Livache T, Dumy P (2004) New acridone derivatives for the electrochemical DNA-hybridisation labeling. Bioelectrochem 63(1–2):233–237. doi:10.1016/j.bioelechem.2003.10.020

    Article  CAS  Google Scholar 

  27. Le Gal JM, Morjani H, Manfait M (1993) Ultrastructural appraisal of the multidrug resistance in K562 and LR73 cell lines from fourier transform infrared spectroscopy. Cancer Res 53(16):3681–3686

    PubMed  Google Scholar 

  28. Rodríguez-Cuesta MJ, Boqué R, Rius FX, Picón Zamora D, Martínez Galera M, Garrido Frenich A (2003) Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Anal Chim Acta 491(1):47–56. doi:10.1016/S0003-2670(03)00786-4

    Article  Google Scholar 

  29. Leitão JMM, Esteves da Silva JCG, Girón AJ, Muñoz de la Peña A (2008) Optimization of verapamil drug analysis by excitation-emission fluorescence in combination with second-order multivariate calibration. J Fluoresc 18(6):1065–1076. doi:10.1007/s10895-008-0351-0

    Article  PubMed  Google Scholar 

  30. Xia AL, Wu HL, Fang DM, Ding YJ, Hu LQ, Yu RQ (2006) Determination of daunomycin in human plasma and urine using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration. Anal Sci 22(9):1189–1195. doi:10.2116/analsci.22.1189

    Article  CAS  PubMed  Google Scholar 

  31. Xie HP, Jiang JH, Cui H, Wu HL, Shen GL, Yu RQ (2002) Competitive interaction of the antitumor drug daunorubicin and the fluorescence probe ethidium bromide with DNA as studied by resolving trilinear fluorescence data: the use of PARAFAC and its modification. Anal Bioanal Chem 373(3):159–162. doi:10.1007/s00216-002-1306-y

    Article  CAS  PubMed  Google Scholar 

  32. Xie HP, Chu X, Jiang JH, Cui H, Shen GL, Yu RQ (2003) Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data. Spectrochimica Acta Part A 59(4):743–749. doi:10.1016/S1386-1425(02)00224-X

    Article  Google Scholar 

  33. Zhang F, Zhang QQ, Wang WG, Wang XL (2006) Synthesis and DNA binding studies by spectroscopic and PARAFAC methods of a ternary copper(II) complex. J PhotoChem & PhotoBio A Chemistry (Easton) 184(3):241–249

    Article  CAS  Google Scholar 

  34. Ni YN, Lin DQ, Kokot S (2008) Synchronous fluorescence and UV–vis spectroscopic studies of interactions between the tetracycline antibiotic, aluminium ions and DNA with the aid of the Methylene Blue dye probe. Anal Chim Acta 606(1):19–25. doi:10.1016/j.aca.2007.10.051

    Article  CAS  PubMed  Google Scholar 

  35. Harshman RA (1970) Foundations of the PARAFAC procedure: models and conditions for an ‘explanatory’ multi-modal factor analysis. UCLA Working Papers in Phonetics 16(1):1–84

    Google Scholar 

  36. Carroll JD, Chang JJ (1970) Analysis of individual differences in multidimensional scaling via an N-way generalization of Eckart-Young decomposition. Psychometrika 35(3):283–319. doi:10.1007/BF02310791

    Article  Google Scholar 

  37. Xia AL, Wu HL, Zhu SH, Han QJ, Zhang Y, Yu RQ (2008) Determination of psoralen in human plasma by using excitation-emission matrix fluorescence coupled to second-order calibration. Anal Sci 24(9):1171–1178. doi:10.2116/analsci.24.1171

    Article  CAS  PubMed  Google Scholar 

  38. Marchiset-Leca D, Leca FR (1993) Highly sensitive method for the determination of a new anthracycline: Pirarubicin. Chromatographia 35(7–8):435–438. doi:10.1007/BF02278598

    Article  CAS  Google Scholar 

  39. Lachâtre F, Marquet P, Ragot S, Gaulier JM, Cardot P, Dupuy JL (2000) Simultaneous determination of four anthracyclines and three metabolites in human serum by liquid chromatography–electrospray mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 738(2):281–291. doi:10.1016/S0378-4347(99)00529-0

    Article  Google Scholar 

  40. Kiers HAL, Krijnen WP (1991) Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. Psychometrica 56(1):147–152. doi:10.1007/BF02294592

    Article  Google Scholar 

  41. Bro R, Kiers HAL (2003) A new efficient method for determining the number of components in PARAFAC modes. J Chemometr 17(5):274–286. doi:10.1002/cem.801

    Article  CAS  Google Scholar 

  42. Faber NM (2001) The price paid for the second-order advantage when using the generalized rank annihilation method (GRAM). J Chemometr 15(9):743–748. doi:10.1002/cem.688

    Article  CAS  Google Scholar 

  43. Olivieri AC (2005) Computing sensitivity and selectivity in parallel factor analysis and related multiway techniques: the need for further developments in net analyte signal theory. Anal Chem 77(15):4936–4946. doi:10.1021/ac050146m

    Article  CAS  PubMed  Google Scholar 

  44. Boqué R, Ferré J, Faber NM, Rius FX (2002) Limit of detection estimator for second-order bilinear calibration. Anal Chim Acta 451(2):313–321. doi:10.1016/S0003-2670(01)01395-2

    Article  Google Scholar 

  45. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76(11):3047–3053. doi:10.1021/ja01640a067

    Article  CAS  Google Scholar 

  46. Oliveira-Brett AM, Diculescu VC (2004) Electrochemical study of quercetin–DNA interactions: Part II. In situ sensing with DNA biosensors. Bioelectrochemistry 64(2):143–150. doi:10.1016/j.bioelechem.2004.05.002

    Article  CAS  PubMed  Google Scholar 

  47. Long EC, Barton JK (1990) On demonstrating DNA. Intercalation. Acc Chem Res 23(9):273–279. doi:10.1021/ar00177a001

    Article  Google Scholar 

  48. Lakowicz JR (2006) Principles of Fluorescence Spectroscopy, 3rd edn. Springer, New York, pp 278–282

    Google Scholar 

  49. Lehrer SS (1971) Solute perturbation of protein fluorescence. Quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10(17):3254–3263. doi:10.1021/bi00793a015

    Article  CAS  PubMed  Google Scholar 

  50. Song YF, Yang P (2001) Mononuclear tetrapyrido[3, 2-a:2′, 3′-c:3′′, 2′′-h:2′′′, 3′′′-j]phenazine (tpphz) cobalt complex. Polyhedron 20(6):501–506. doi:10.1016/S0277-5387(00)00648-3

    Article  CAS  Google Scholar 

  51. González AG, Herrador MA, Asuero AG (1999) Intra-laboratory testing of method accuracy from recovery assays. Talanta 48(3):729–736. doi:10.1016/S0039-9140(98)00271-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Nature Science Foundation of China (Grant Nos. 20775025 and 20435010) and the National 973 Project (2007CB216404) for financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Long Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, HY., Wu, HL., Zhang, Y. et al. Studying the Interaction of Pirarubicin with DNA and Determining Pirarubicin in Human Urine Samples: Combining Excitation -Emission Fluorescence Matrices with Second-order Calibration Methods. J Fluoresc 19, 955–966 (2009). https://doi.org/10.1007/s10895-009-0495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0495-6

Keywords

Navigation