Skip to main content
Log in

Voltage-Gated Metal-Enhanced Fluorescence

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We demonstrate the influence of electrical current on the ability of surface plasmons to amplify fluorescence signatures. An applied direct current across Silver Island Films (SIFs) of low electrical resistance perturbs the fluorescence enhancement. For a given applied current, surface plasmons in just-continuous films are sparsely available for fluorophore dipole-coupling and hence the enhanced fluorescence is gated as a function of the applied current. For thicker, low resistance films, sufficient charge carriers are now present in the metal that metal-enhanced fluorescence (MEF) is perturbed to a lesser extent, induced surface plasmons readily formed on the surface by the close-proximity dipole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MEF:

Metal-enhanced fluorescence

SIFs:

Silver Island Films

FITC:

Fluorescein isothiocyanate

SEM:

Scanning electron microscopy

AFM:

Atomic force microscope

References

  1. Drexhage KH (1970) Influence of a dielectric interface on fluorescence decay time. J Luminesc 1/2:693–701

    Article  Google Scholar 

  2. Persson BNJ (1978) Theory of damping of excited molecules located above a metal-surface. J Phys C Solid State Phys 11(20):4251–4269 doi:10.1088/0022-3719/11/20/020

    Article  CAS  Google Scholar 

  3. Weitz DA, Garoff S, Hanson CD, Gramila TJ, Gersten JI (1981) Fluorescent lifetimes and yields of molecules adsorbed on Silver-Island Films. J Lumin 24–5:83–86 (Nov). doi:10.1016/0022-2313(81)90226-X

    Article  Google Scholar 

  4. Aroca R, Kovacs GJ, Jennings CA, Loutfy RO, Vincett PS (1988) Fluorescence enhancement from Langmuir–Blodgett monolayers on Silver Island Films. Langmuir 4(3):518–521 doi:10.1021/la00081a004

    Article  CAS  Google Scholar 

  5. Barnes WL (1998) Fluorescence near interfaces: the role of photonic mode density. J Mod Opt 45(4):661–699

    CAS  Google Scholar 

  6. Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12(2):121–129 doi:10.1023/A:1016875709579

    Article  Google Scholar 

  7. Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16(1):55–62 doi:10.1016/j.copbio.2005.01.001

    Article  PubMed  CAS  Google Scholar 

  8. Zhang Y, Aslan K, Previte MJ, Geddes CD (2007) Low temperature metal-enhanced fluorescence. J Fluoresc 17(6):627–631 doi:10.1007/s10895-007-0235-8

    Article  PubMed  CAS  Google Scholar 

  9. Aslan K, Geddes CD (2005) Microwave-accelerated metal-enhanced fluorescence: platform technology for ultrafast and ultrabright assays. Anal Chem 77(24):8057–8067 doi:10.1021/ac0516077

    Article  PubMed  CAS  Google Scholar 

  10. Aslan K, Malyn SN, Geddes CD (2007) Angular-dependent metal-enhanced fluorescence from silver colloid-deposited films: opportunity for angular-ratiometric surface assays. Analyst (Lond) 132(11):1112–1121 doi:10.1039/b709170b

    Article  CAS  Google Scholar 

  11. Chowdhury MH, Aslan K, Malyn SN, Lakowicz JR, Geddes CD (2006) Metal-enhanced chemiluminescence: radiating plasmons generated from chemically induced electronic excited states. Appl Phys Lett 88:173104

    Article  Google Scholar 

  12. Boehm DA, Gottlieb PA, Hua SZ (2007) On-chip microfluidic biosensor for bacterial detection and identification. Sens Actuators B Chem 126(2):508–514 doi:10.1016/j.snb.2007.03.043

    Article  Google Scholar 

  13. Aslan K, Zhang Y, Hibbs S, Baillie L, Previte MJ, Geddes CD (2007) Microwave-accelerated metal-enhanced fluorescence: application to detection of genomic and exosporium anthrax DNA in <30 seconds. Analyst (Lond) 132(11):1130–1138 doi:10.1039/b707876e

    Article  CAS  Google Scholar 

  14. Makinen AJ, Foos EE, Wilkinson J, Long JP (2007) STM-induced light emission from substrate-tethered quantum dots. J Phys Chem C 111(23):8188–8194 doi:10.1021/jp0712396

    Article  Google Scholar 

  15. Liu HW, Ie Y, Nishitani R, Aso Y, Iwasaki H (2007) Bias dependence of tunneling-electron-induced molecular fluorescence from porphyrin films on noble-metal substrates. Phys Rev B 75(11). doi:10.1103/PhysRevB.75.115429

Download references

Acknowledgment

The authors acknowledge UMBI. MBC and the IoF for salary support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris D. Geddes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Aslan, K. & Geddes, C.D. Voltage-Gated Metal-Enhanced Fluorescence. J Fluoresc 19, 363–367 (2009). https://doi.org/10.1007/s10895-009-0467-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0467-x

Keywords

Navigation