Skip to main content

Advertisement

Log in

Control of Two-photon Fluorescence of Common Dyes and Conjugated Dyes

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We present a comprehensive study of the selective excitation of two-photon fluorescence from various pairs of dyes and dyes in different conjugation states with tailored pulse shapes found with a genetic algorithm (GA). We investigate a number of biologically important dyes, and include dyes conjugated to trastuzumab (Herceptin®) and to a poly(amidoamine) dendrimer. We consider in detail the ability of tailored pulse shaping to discriminate dyes with significant spectral overlap. Our procedure for adaptive pulse shaping includes power-law and chirp-scaling checks to prevent trivial convergences. The GA uses a multiplicative fitness parameter in a graded search method that converges on pulse shapes that not only differentiate two-photon processes, but do so in a high signal regime. We consider the results in terms of not only the absolute maximum ratio of discrimination achieved, but also present the evolutionary course of the GA and compare the improvement to a quantitative measure of the noise level. We also implement a time-domain acousto-optic measurement of two-photon excitation cross-section spectra. The results show that the ability to discriminate dyes is determined almost entirely by their differences in two-photon excitation cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377 doi:10.1038/nbt899

    Article  PubMed  CAS  Google Scholar 

  2. König K (2000) Multiphoton microscopy in life sciences. J Microsc 200:83–104 doi:10.1046/j.1365-2818.2000.00738.x

    Article  PubMed  Google Scholar 

  3. Squirrell JM, Wokosin DL, White JG, Bavister BD (1999) Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17:763–767 doi:10.1038/11698

    Article  PubMed  CAS  Google Scholar 

  4. Zhong C, Ye J, Myc A, Thomas T, Bielinska A Jr, Norris T (2005) Two-photon flow cytometry. In: Periasamy A, So P (eds) SPIE 5700:78–89

  5. Tkaczyk ER, Zhong CF, Ye JY, Myc A, Thomas T, Cao Z, Duran-Struuck R, Luker KE, Luker GD, Norris TB, Baker JR Jr (2008) In vivo monitoring of multiple circulating cell populations using two-photon flow cytometry. Opt Commun 281:888–894 doi:10.1016/j.optcom.2007.10.106

    Article  PubMed  CAS  Google Scholar 

  6. Tkaczyk ER, Tkaczyk AH, Katnik S, Ye JY, Luker KE, Luker GD, Myc A, Baker JR, Norris TB (2008) Extended cavity laser enhanced two-photon flow cytometry. J Biomed Opt 13(4):041319

    Article  PubMed  Google Scholar 

  7. Ogilvie JP, Débarre D, Solinas X, Martin JL, Beaurepaire E, Joffre M (2006) Use of coherent control for selective two-photon fluorescence microscopy in live organisms. Opt Express 14:759–766 doi:10.1364/OPEX.14.000759

    Article  PubMed  Google Scholar 

  8. Zhong CF, Tkaczyk ER, Thomas T, Ye JY, Myc A, Bielinska AU, Cao Z, Majoros I, Keszler B, Baker JR, Norris TB (2008) Quantitative two-photon flow cytometry—in vitro and in vivo. Journal of biomedical optics 13(3):034008-1-034008-19

    Google Scholar 

  9. Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514 doi:10.1038/nature00933

    Article  PubMed  CAS  Google Scholar 

  10. Brixner T, Damrauer NH, Niklaus P, Gerber G (2001) Photoselective adaptive femtosecond quantum control in the liquid phase. Nature 414:57–60 doi:10.1038/35102037

    Article  PubMed  CAS  Google Scholar 

  11. Lozovoy V, Pastirk I, Walowicz K, Dantus M (2003) Multiphoton intrapulse interference II. Control of two- and three-photon laser induced fluorescence with shaped pulses. J Chem Phys 118:3187–3196 doi:10.1063/1.1531620

    Article  CAS  Google Scholar 

  12. Cao J, Che J, Wilson KR (1998) Intrapulse dynamical effects in multiphoton processes: theoretical analysis. J Phys Chem A 102:4284–4290 doi:10.1021/jp973097t

    Article  CAS  Google Scholar 

  13. Tannor DJ, Kosloff R, Rice SA (1986) Coherent pulse sequence induced control of selectivity of reactions: exact quantum mechanical calculations. J Chem Phys 85:5805–5820 doi:10.1063/1.451542

    Article  CAS  Google Scholar 

  14. Bardeen CJ, Yakovlev VV, Squier JA, Wilson KR (1998) Quantum control of population transfer in green fluorescent protein by using chirped femtosecond pulses. J Am Chem Soc 120:13023–13027 doi:10.1021/ja9824627

    Article  CAS  Google Scholar 

  15. Blanchet Vr, Nicole Cl, Bouchene M-A, Girard B (1997) Temporal coherent control in two-photon transitions: from optical interferences to quantum interferences. Phys Rev Lett 78:2716–2719 doi:10.1103/PhysRevLett.78.2716

    Article  CAS  Google Scholar 

  16. Dudovich N, Dayan B, Gallagher Faeder SM, Silberberg Y (2001) Transform-limited pulses are not optimal for resonant multiphoton transitions. Phys Rev Lett 86:47–50 doi:10.1103/PhysRevLett.86.47

    Article  PubMed  CAS  Google Scholar 

  17. Laiho L, Pelet S, Hancewicz T, Kaplan P, So P (2005) Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. Journal of Biomedical Optics 10(2): 024016-1-024016-10

  18. Lozovoy V, Dantus M (2005) Systematic control of nonlinear optical processes using optimally shaped femtosecond pulses. ChemPhysChem 6:1970–2000 doi:10.1002/cphc.200400342

    Article  PubMed  CAS  Google Scholar 

  19. Kawano H, Nabekawa Y, Suda A, Oishi Y, Mizuno H, Miyawaki A, Midorikawa K (2003) Attenuation of photobleaching in two-photon excitation fluorescence from green fluorescent protein with shaped excitation pulses. Biochem Biophys Res Commun 311:592–596 doi:10.1016/j.bbrc.2003.09.236

    Article  PubMed  CAS  Google Scholar 

  20. Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:3–8 doi:10.1016/S0959-8049(01)00230-1

    Article  Google Scholar 

  21. Mendelsohn J, Baselga J (2003) Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol 21:2787–2799 doi:10.1200/JCO.2003.01.504

    Article  PubMed  CAS  Google Scholar 

  22. Majoros IJ, Thomas TP, Mehta CB, Baker JR (2005) Poly(amidoamine) dendrimer-based multifunctional engineered nanodevice for cancer therapy. J Med Chem 48:5892–5899 doi:10.1021/jm0401863

    Article  PubMed  CAS  Google Scholar 

  23. Thomas T, Ye JY, Chang Y-C, Kotlyar A, Cao Z, Majoros I, Norris TB, Baker JR (2008) Investigation of tumor cell targeting of a dendrimer nanoparticle using a double-clad optical fiber probe. J Biomed Opt 13:014024 doi:10.1117/1.2870105

    Article  PubMed  CAS  Google Scholar 

  24. Verluise F, Laude V, Huignard JP, Tournois P, Migus A (2000) Arbitrary dispersion control of ultrashort optical pulses with acoustic waves. J Opt Soc Am B 17:138–145 doi:10.1364/JOSAB.17.000138

    Article  CAS  Google Scholar 

  25. Kaplan D, Tournois P (2002) Theory and performance of the acousto optic programmable dispersive filter used for femtosecond laser pulse shaping. J Phys IV 12:69–75 doi:10.1051/jp4:20020098

    Google Scholar 

  26. Wu J, Berland K (2007) Fluorescence intensity is a poor predictor of saturation effects in two-photon microscopy: Artifacts in fluorescence correlation spectroscopy. Microsc Res Tech 70:682–686 doi:10.1002/jemt.20454

    Article  PubMed  Google Scholar 

  27. Widengren J, Rigler R (1996) Mechanisms of photobleaching investigated by fluorescence correlation spectroscopy. Bioimaging 4:149–157

    Article  CAS  Google Scholar 

  28. Siegman AE (1987) Lasers. Am J Phys 55:862 doi:10.1119/1.14984

    Article  Google Scholar 

  29. Bardeen CJ, Wang Q, Shank CV (1998) Femtosecond chirped pulse excitation of vibrational wave packets in LD690 and bacteriorhodopsin. J Phys Chem A 102:2759–2766 doi:10.1021/jp980346k

    Article  CAS  Google Scholar 

  30. Pearson BJ, White JL, Weinacht TC, Bucksbaum PH (2001) Coherent control using adaptive learning algorithms. Phys Rev A 63:063412 doi:10.1103/PhysRevA.63.063412

    Article  CAS  Google Scholar 

  31. Tkaczyk ER, Mignot A, Ye JY, Majoros I, Baker JR, Norris TB (2006) Increasing two-photon fluorescence signals by coherent control. Proceedings of the SPIE 6089:165–174

    Google Scholar 

  32. Laarmann T, Shchatsinin I, Singh P, Zhavoronkov N, Gerhards M, Schulz CP, Hertel IV (2007) Coherent control of bond breaking in amino acid complexes with tailored femtosecond pulses. J Chem Phys 127(20):201101 doi:10.1063/1.2806029

    Article  PubMed  CAS  Google Scholar 

  33. Trebino R, Delong K, Fittinghoff D, Sweetser J, Krumbugel M, Richman B, Kane D (1997) Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating. Rev Sci Instrum 68:3277–3295 doi:10.1063/1.1148286

    Article  CAS  Google Scholar 

  34. Weiner A (1983) Effect of group velocity mismatch on the measurement of ultrashort optical pulses via second harmonic generation. IEEE J Quantum Electron 19:1276–1283 doi:10.1109/JQE.1983.1072036

    Article  Google Scholar 

  35. Ogilvie J, Kubarych K, Alexandrou A, Joffre M (2005) Fourier transform measurement of two-photon excitation spectra: applications to microscopy and optimal control. Opt Lett 30:911–913 doi:10.1364/OL.30.000911

    Article  PubMed  Google Scholar 

  36. Bellini M, Bartoli A, Hänsch TW (1997) Two-photon Fourier spectroscopy with femtosecond light pulses. Opt Lett 22:540–542 doi:10.1364/OL.22.000540

    Article  PubMed  CAS  Google Scholar 

  37. Naganuma K, Mogi K, Yamada H (1989) General method for ultrashort light pulse chirp measurement. IEEE J Quantum Electron 25:1225–1233 doi:10.1109/3.29252

    Article  CAS  Google Scholar 

  38. Trebino R (2002) Frequency-resolved optical gating: The measurement of ultrashort laser pulses. Springer, New York

    Google Scholar 

  39. Makarov N, Drobizhev M, Rebane A (2008) Two-photon absorption standards in the 550–1,600 nm excitation wavelength range. Opt Express 16:4029–4047 doi:10.1364/OE.16.004029

    Article  PubMed  CAS  Google Scholar 

  40. So P, Dong C, Masters B, Berland K (2000) Two-photon excitation fluorescence microscopy. Annu Rev Biomed Eng 2:399–429 doi:10.1146/annurev.bioeng.2.1.399

    Article  PubMed  CAS  Google Scholar 

  41. Xu C, Zipfel W, Shear J, Williams R, Webb W (1996) Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy. Proc Natl Acad Sci USA 93:10763–10768 doi:10.1073/pnas.93.20.10763

    Article  PubMed  CAS  Google Scholar 

  42. Denk W, Svoboda K (1997) Photon upmanship: why multiphoton imaging is more than a gimmick. Neuron 18:351–357 doi:10.1016/S0896-6273(00)81237-4

    Article  PubMed  CAS  Google Scholar 

  43. Tkaczyk ER, Tkaczyk AH, Mauring K, Ye JY, Baker JR, Norris TB (2008) Quantitative differentiation of dyes with overlapping one-photon spectra by femtosecond pulse shaping. submitted to Chem Phys Lett

  44. Bestvater F, Spiess E, Stobrawa G, Hacker M, Feurer T, Porwol T, Berchner-Pfannschmidt U, Wotzlaw C, Acker H (2002) Two-photon fluorescence absorption and emission spectra of dyes relevant for cell imaging. J Microsc 208:108–115 doi:10.1046/j.1365-2818.2002.01074.x

    Article  PubMed  CAS  Google Scholar 

  45. Brixner T, Damrauer NH, Kiefer B, Gerber G (2003) Liquid-phase adaptive femtosecond quantum control: Removing intrinsic intensity dependencies. J Chem Phys 118:3692–3701 doi:10.1063/1.1538239

    Article  CAS  Google Scholar 

  46. Brixner T, Kiefer B, Gerber G (2001) Problem complexity in femtosecond quantum control. Chem Phys 267:241–246 doi:10.1016/S0301-0104(01)00223-3

    Article  CAS  Google Scholar 

  47. Prokhorenko VI, Nagy AM, Miller RJD (2005) Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study. J Chem Phys 122(18):184502 doi:10.1063/1.1886750

    Article  PubMed  CAS  Google Scholar 

  48. Pastirk I, Dela Cruz J, Walowicz K, Lozovoy V, Dantus M (2003) Selective two-photon microscopy with shaped femtosecond pulses. Opt Express 11:1695–1701

    Article  PubMed  Google Scholar 

  49. Delacruz JM, Pastirk I, Lozovoy VV, Walowicz KA, Dantus M (2004) Multiphoton intrapulse interference 3: probing microscopic chemical environments. J Phys Chem A 108:53–58 doi:10.1021/jp036150o

    Article  CAS  Google Scholar 

  50. Du H, Fuh R-CA, Li J, Corkan LA, Lindsey JS (1998) PhotochemCAD: A computer-aided design and research tool in photochemistry. Photochem Photobiol 68:141–142

    CAS  Google Scholar 

  51. Invitrogen (2008) http://probes.invitrogen.com/servlets/spectra. Invitrogen Website

  52. Tkaczyk ER, Mauring K, Tkaczyk AH, Krasnenko V, Ye JY, Baker JR, Norris TB (2008) Control of the blue fluorescent protein with advanced evolutionary pulse shaping. Biochem Biophys Research Commun 376(4):733–737

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported in full or in part by the cooperative award ESEI-2900-TR-07 from the Estonian Science Foundation and the United States Civilian Research and Development Foundation. During this investigation, ET was supported initially by the University of Michigan MD/PhD program and then by an NSF Graduate Research Fellowship. The authors are indebted to Gary Luker, Andrzej Myc, and Thommey Thomas for samples. A visit by Daniel Kaplan was instrumental in proper operation of the Dazzler and also to develop physical constraint programming in the GA. We would also like to express our gratitude to Daniel Kane and Rick Trebino for numerous stimulating phone conversations about the FROG technique.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Tkaczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tkaczyk, E.R., Tkaczyk, A.H., Mauring, K. et al. Control of Two-photon Fluorescence of Common Dyes and Conjugated Dyes. J Fluoresc 19, 517–532 (2009). https://doi.org/10.1007/s10895-008-0441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0441-z

Keywords

Navigation