Skip to main content
Log in

Independence of Maximum Single Molecule Fluorescence Count Rate on the Temporal and Spectral Laser Pulse Width in Two-Photon FCS

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We investigate the fluorescence emission characteristics of standard dye tetramethylrhodamine (TMR) in two-photon fluorescence correlation spectroscopy for different temporal and spectral properties of the femtosecond excitation pulses. After determining the second-order dispersion of our setup, including the microscope objective, a pulse stretcher was employed to control the temporal width at the location of the specimen. As expected, the fluorescence per molecule and therefore the signal-to-noise ratio of an FCS-measurement can be improved at constant average excitation power by altering either the temporal or spectral width of the excitation pulses. We found however, that the maximum achievable molecular brightness is largely independent of the temporal and spectral width in the regime analyzed. This observation confirms the current working hypothesis for two-photon fluorescence correlation spectroscopy that bleaching and saturation, and thus, the inherent properties of the dye system, are the dominant effects limiting the quality of measurements. As a practical consequence, elaborate optimization of temporal and spectral laser pulse width, e.g. by introducing pulse stretchers in the beam path, is less critical than previously expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Haustein E, Schwille P (2003) Methods 29:153–166

    Article  PubMed  CAS  Google Scholar 

  2. Bacia K, Kim SA, Schwille P (2006) Nat Meth 3:83–89

    Article  CAS  Google Scholar 

  3. Schwille P, Haupts U, Maiti S, Webb WW (1999) Biophys J 77:2251–2265

    PubMed  CAS  Google Scholar 

  4. Denk W, Strickler JH, Webb WW (1990) Science 148:73–79

    Article  Google Scholar 

  5. Berland KM, So PTC, Gratton E (1995) Biophys J 68:694–701

    PubMed  CAS  Google Scholar 

  6. Heinze KG, Koltermann A, Schwille P (2000) PNAS 19:10377–10382

    Article  Google Scholar 

  7. Heinze KG, Jahnz M, Schwille P (2004) Biophys J 86:506–516

    PubMed  CAS  Google Scholar 

  8. Kim SA, Heinze KG, Waxham MN, Schwille P (2004) PNAS 101:105–110

    Article  PubMed  CAS  Google Scholar 

  9. Kim SA, Heinze KG, Bacia K, Waxham MN, Schwille P (2005) Biophys J 88:4319–4336

    Article  PubMed  CAS  Google Scholar 

  10. Berland KM, Shen G (2003) Appl Opt 42:5566–5576

    Article  PubMed  Google Scholar 

  11. Dittrich PS, Schwille P (2001) Appl Phys B 73:829–837

    Article  CAS  Google Scholar 

  12. Eggeling C, Volkmer A, Seidel CAM (2005) Chem Phys Chem 6:791–804

    PubMed  CAS  Google Scholar 

  13. Xu C, Webb WW (1996) J Opt Soc Am B 13:481–491

    CAS  Google Scholar 

  14. Niesner R, Roth W, Gerike K-H (2004) Chem Phys Chem 5:678–687

    PubMed  CAS  Google Scholar 

  15. Nagy A, Wu J, Berland KM (2005) Biophys J 89:2077–2090

    Article  PubMed  CAS  Google Scholar 

  16. Iyer V, Rossow MJ, Waxham MN (2006) J Opt Soc Am B 23:1420–1433

    Article  CAS  Google Scholar 

  17. Koppel DE (1974) Phys Rev A 10:1938–1945

    Article  Google Scholar 

  18. Kask P, Günther R, Axhausen P (1997) Eur Biophys J 25:163–169

    Article  Google Scholar 

  19. Gregor I, Patra D, Enderlein J (2005) Chem Phys Chem 6:164–170

    PubMed  CAS  Google Scholar 

  20. NL Thompson (1991) Fluorescence correlation spectroscopy. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol. 1. Plenum Press, pp 337–378

  21. Guild JB, Xu C, Webb WW (1997) Appl Opt 36:397–401

    Article  PubMed  CAS  Google Scholar 

  22. Fork RL, Martinez OE, Gordon JP (1984) Opt Lett 9:150–152

    Article  CAS  PubMed  Google Scholar 

  23. Wolleschensky R, Feurer T, Sauerbrey R, Simon U (1998) Appl Phys B 67:87–94

    Article  CAS  Google Scholar 

  24. Bardeen CJ, Yakovlev V, Squier JA, Wilson KR, Carpenter SD, Weber PM (1999) J Biomed Opt 4:362–367

    Article  Google Scholar 

  25. Pastirk I, Dela Cruz JM, Walowicz KA, Lozovoy VV, Dantus M (2003) Opt Expr 11:1695–1701

    Article  Google Scholar 

Download references

Acknowlegdments

This work was supported by EFRE grant No. 4212/04-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petra Schwille.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mütze, J., Petrášek, Z. & Schwille, P. Independence of Maximum Single Molecule Fluorescence Count Rate on the Temporal and Spectral Laser Pulse Width in Two-Photon FCS. J Fluoresc 17, 805–810 (2007). https://doi.org/10.1007/s10895-007-0246-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0246-5

Keywords

Navigation