Skip to main content

Advertisement

Log in

Theory of Directed Electronic Energy Transfer

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The migration of electronic energy between molecules or chromophores in molecular solids is a well-studied phenomenon. The ability to exert control over the directionality of this transfer, by a variety of methods involving applied electrical or optical fields, holds promise for advances in fields including nanoelectronics and energy harvesting materials. In this paper, we review in detail a number of methods for directing energy transfer, also identifying potential applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. T. Förster (1948).*Zwischenmolekulare Energiewanderung Und Fluoreszenz. Ann. Phys.-Berlin 2(1–2), 55–75.

    Article  Google Scholar 

  2. D. P. Craig and T. Thirunamachandran (1986). Radiation molecule and molecule–molecule interactions—A unified viewpoint from quantum electrodynamics. Accounts Chem. Res. 19(1), 10–16.

    Article  CAS  Google Scholar 

  3. D. L. Andrews and B. S. Sherborne (1987). Resonant excitation transfer: A quantum electrodynamical study. J. Chem. Phys. 86(7), 4011–4017.

    Article  CAS  Google Scholar 

  4. G. Juzeliunas and D. L. Andrews (2000). Quantum electrodynamics of resonance energy transfer. Adv. Chem. Phys. 112, 357–410.

    Article  CAS  Google Scholar 

  5. G. J. Daniels, R. D. Jenkins, D. S. Bradshaw, and D. L. Andrews (2003). Resonance energy transfer: The unified theory revisited. J. Chem. Phys. 119(4), 2264–2274.

    Article  CAS  Google Scholar 

  6. A. Salam (2005). A general formula for the rate of resonant transfer of energy between two electric multipole moments of arbitrary order using molecular quantum electrodynamics. J. Chem. Phys. 122(4), 044112.

    Google Scholar 

  7. A. Salam (2005). Resonant transfer of excitation between two molecules using Maxwell fields. J. Chem. Phys. 122(4), 044113.

    Google Scholar 

  8. X. Hu and K. Schulten (1998). Model for the light-harvesting complex I (B875) of Rhodobacter sphaeroides. Biophys. J. 75, 683–694.

    Article  PubMed  CAS  Google Scholar 

  9. V. Sundström, T. Pullerits, and R. van Grondelle (1999). Photosynthetic light-harvesting: Reconciling dynamics and structure of purple bacterial LH2 reveals function of photosynthetic unit. J. Phys. Chem. B 103(13), 2327–2346.

    Article  Google Scholar 

  10. A. W. Roszak, T. D. Howard, J. Southall, A. T. Gardiner, C. J. Law, N. W. Isaacs, and R. J. Cogdell (2003). Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302, 1969–1972.

    Article  PubMed  CAS  Google Scholar 

  11. B. P. Krueger, G. D. Scholes, I. R. Gould, and G. R. Fleming (1999). Carotenoid mediated B800–B850 coupling in LH2. Phys. Chem. Comm. 8, 34–40.

    Google Scholar 

  12. Z. Katiliene, E. Katilius, G. H. Uyeda, J. C. Williams, and N. W. Woodbury (2004). Increasing the rate of energy transfer between the LH1 antenna and the reaction center in the photosynthetic bacterium Rhodobacter sphaeroides. J. Phys. Chem. B 108(12), 3863–3870.

    Article  CAS  Google Scholar 

  13. X. Hu, A. Damjanovik, T. Ritz, and K. Schulten (1998). Architecture and mechanism of the light-harvesting apparatus of purple bacteria. Proc. Natl. Acad. Sci. USA 95, 5935–5941.

    Article  PubMed  CAS  Google Scholar 

  14. H.-M. Wu, M. Rätsep, R. Jankowiak, R. J. Cogdell, and G. J. Small (1998). Hole-burning and absorption studies of the LH1 antenna complex of purple bacteria: Effects of pressure and temperature. J. Phys. Chem. B 102(20), 4023–4034.

    Article  CAS  Google Scholar 

  15. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming (2005). Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434(7033), 625–628.

    Article  PubMed  CAS  Google Scholar 

  16. A. Bar-Haim and J. Klafter (1998). Dendrimers as light harvesting antennae. J. Lumin. 76–7, 197–200.

    Article  Google Scholar 

  17. A. Bar-Haim and J. Klafter (1998). Geometric versus energetic competition in light harvesting by dendrimers. J. Phys. Chem. B 102(10), 1662–1664.

    Article  CAS  Google Scholar 

  18. S. Tretiak, V. Chernyak, and S. Mukamel (1998). Localized electronic excitations in phenylacetylene dendrimers. J. Phys. Chem. B 102(18), 3310–3315.

    Article  CAS  Google Scholar 

  19. S. F. Swallen, Z. Y. Shi, W. H. Tan, Z. F. Xu, J. S. Moore, and R. Kopelman (1998). Exciton localization hierarchy and directed energy transfer in conjugated linear aromatic chains and dendrimeric supermolecules. J. Lumin. 76–77, 193–196.

    Article  Google Scholar 

  20. A. Adronov and J. M. J. Frechet (2000). Light-harvesting dendrimers. Chem. Commun. (18), 1701–1710.

  21. C. Devadoss, P. Bharathi, and J. S. Moore (1996). Energy transfer in dendritic macromolecules: Molecular size effects and the role of an energy gradient. J. Am. Chem. Soc. 118(40), 9635–9644.

    Article  CAS  Google Scholar 

  22. M. R. Shortreed, S. F. Swallen, Z. Y. Shi, W. H. Tan, Z. F. Xu, C. Devadoss, J. S. Moore, and R. Kopelman (1997). Directed energy transfer funnels in dendrimeric antenna supermolecules. J. Phys. Chem. B 101(33), 6318–6322.

    Article  Google Scholar 

  23. U. Hahn, M. Gorka, F. Vögtle, V. Vicinelli, P. Ceroni, M. Maestri, and V. Balzani (2002). Light-harvesting dendrimers: Efficient intra- and intermolecular energy-transfer processes in a species containing 65 chromophoric groups of four different types. Angew. Chem. Int. Ed. 41(19), 3595–3598.

    Article  CAS  Google Scholar 

  24. F. Würthner and A. Sautter (2003). Energy transfer in multichromophoric self-assembled molecular squares. Org. Biomol. Chem. 1(2), 240–243.

    Article  PubMed  CAS  Google Scholar 

  25. P. Furuta, J. Brooks, M. E. Thompson, and J. M. J. Frechet (2003). Simultaneous light emission from a mixture of dendrimer encapsulated chromophores: A model for single-layer multichromophoric organic light-emitting diodes. J. Am. Chem. Soc. 125(43), 13165–13172.

    Article  PubMed  CAS  Google Scholar 

  26. N. Nishiyama, H. R. Stapert, G. D. Zhang, D. Takasu, D. L. Jiang, T. Nagano, T. Aida, and K. Kataoka (2003). Light-harvesting ionic dendrimer porphyrins as new photosensitizers for photodynamic therapy. Bioconjug. Chem. 14(1), 58–66.

    Article  PubMed  CAS  Google Scholar 

  27. G. Juzeliunas and D. L. Andrews (1999). In D. L. Andrews and A. A. Demidov (Eds.), Resonance Energy Transfer, Wiley, Chichester, pp. 65–107.

    Google Scholar 

  28. B. Wieb van der Meer (1999). In D. L. Andrews and A. A. Demidov (Eds.), Resonance Energy Transfer, Wiley, Chichester, pp. 151–172.

    Google Scholar 

  29. D. L. Andrews and A. M. Bittner (1993). Energy-transfer in a static electric-field. J. Lumin. 55(5–6), 231–242.

    Article  CAS  Google Scholar 

  30. G. J. Daniels and D. L. Andrews (2002). The electronic influence of a third body on resonance energy transfer (vol. 116, p. 6701, 2002). J. Chem. Phys. 117(14), 6882(E)–6893.

    Article  CAS  Google Scholar 

  31. P. Allcock, R. D. Jenkins, and D. L. Andrews (2000). Laser-assisted resonance-energy transfer. Phys. Rev. A 6102(2), 023812.

    Article  Google Scholar 

  32. A. Aviram (1988). Molecules for memory, logic, and amplification. J. Am. Chem. Soc. 110, 5687–5692.

    Article  CAS  Google Scholar 

  33. J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour (1999). Large on–off ratios and negative differential resistance in a molecular electronic device. Science 286(5444), 1550–1552.

    Article  PubMed  CAS  Google Scholar 

  34. Z. Q. Yang, N. D. Lang, and M. Di Ventra (2003). Effects of geometry and doping on the operation of molecular transistors. Appl. Phys. Lett. 82(12), 1938–1940.

    Article  CAS  Google Scholar 

  35. M. Alvaro, M. N. Chretien, B. Ferrer, V. Fornes, H. Garcia, and J. C. Scaiano (2001). First molecular switch encapsulated within the cavities of a zeolite. A dramatic lifetime increase of the charge-separated state. Chem. Commun. (20), 2106–2107.

  36. E. M. Just and M. R. Wasielewski (2000). Picosecond molecular switch based on the influence of photogenerated electric fields on optical charge transfer transitions. Superlattices Microstruct. 28(4), 317–328.

    Article  CAS  Google Scholar 

  37. S. Sangu, K. Kobayashi, A. Shojiguchi, T. Kawazoe, and M. Ohtsu (2003). Excitation energy transfer and population dynamics in a quantum dot system induced by optical near-field interaction. J. Appl. Phys. 93(5), 2937–2945.

    Article  CAS  Google Scholar 

  38. O. Wada (2004). Femtosecond all-optical devices for ultrafast communication and signal processing. New J. Phys. 6, 183.

    Article  Google Scholar 

  39. B. S. Ham (2001). A novel method of all-optical switching: Quantum router. ETRI J. 23(3), 106–110.

    Google Scholar 

  40. D. L. Andrews and R. G. Crisp (in press), Optically-activated energy transfer: Array implementation, J. Opt. A: Pure Appl. Opt.

Download references

Acknowledgements

Research in the quantum electrodynamics group at UEA is funded by the UK Engineering and Physical Sciences Research Council (EPSRC). We gladly acknowledge the award of an EPSRC studentship to RGC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Andrews.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, D.L., Crisp, R.G. Theory of Directed Electronic Energy Transfer. J Fluoresc 16, 191–199 (2006). https://doi.org/10.1007/s10895-005-0033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0033-0

Keywords

Navigation