Skip to main content
Log in

Biosynthesis of Phenolic Glycosides from Phenylpropanoid and Benzenoid Precursors in Populus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Salicylate-containing phenolic glycosides (PGs) are abundant and often play a dominant role in plant-herbivore interactions of Populus and Salix species (family Salicaceae), but the biosynthetic pathway to PGs remains unclear. Cinnamic acid (CA) is thought to be a precursor of the salicyl moiety of PGs. However, the origin of the 6-hydroxy-2-cyclohexen-on-oyl (HCH) moiety found in certain PGs, such as salicortin, is not known. HCH is of interest because it confers toxicity and antifeedant properties against herbivores. We incubated Populus nigra leaf tissue with stable isotope-labeled CA, benzoates, and salicylates, and measured isotopic incorporation levels into both salicin, the simplest PG, and salicortin. Labeling of salicortin from [13C6]-CA provided the first evidence that HCH, like the salicyl moiety, is a phenylpropanoid derivative. Benzoic acid and benzaldehyde also labeled both salicyl and HCH, while benzyl alcohol labeled only the salicyl moiety in salicortin. Co-administration of unlabeled benzoates with [13C6]-CA confirmed their contribution to the biosynthesis of the salicyl but not the HCH moiety of salicortin. These data suggest that benzoate interconversions may modulate partitioning of phenylpropanoids to salicyl and HCH moieties, and hence toxicity of PGs. Surprisingly, labeled salicyl alcohol and salicylaldehyde were readily converted to salicin, but did not result in labeled salicortin. Co-administration of unlabeled salicylates with labeled CA suggested that salicyl alcohol and salicylaldehyde may have inhibited salicortin biosynthesis. A revised metabolic grid model of PG biosynthesis in Populus is proposed, providing a guide for functional genomic analysis of the PG biosynthetic pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Boatright, J., Negre, F., CHEN, X., KISH, C. M., WOOD, B., PEEL, G., ORLOVA, I., GANG, D. R., RHODES, D., and DUDAREVA, N., 2004. Understanding in vivo benzenoid metabolism in petunia petal tissue. Plant Physiol. 135, 1993–2011.

    Article  CAS  PubMed  Google Scholar 

  • DEAN, J. V., SHAH, R. P., and MOHAMMED, L. A., 2003. Formation and vacuolar localization of salicylic acid glucose conjugates in soybean cell suspension cultures. Physiol. Plantarum 118, 328–336.

    Article  CAS  Google Scholar 

  • DONALDSON, J. R., KRUGER, E. L., and LINDROTH, R. L. 2006. Competition- and resource-mediated tradeoffs between growth and defensive chemistry in trembling aspen (Populus tremuloides). New Phytol. 169, 561–570.

    Article  CAS  PubMed  Google Scholar 

  • HWANG, S. Y. and LINDROTH, R. L., 1997. Clonal variation in foliar chemistry of aspen: Effects on gypsy moth and forest tent caterpillar. Oecologia 111, 99–108.

    Article  Google Scholar 

  • JARVIS, A. P., SCHAAF, O., and OLDHAM, N. J., 2000. 3-Hydroxy-3-phenylpropanoic acid is an intermediate in the biosynthesis of benzoic acid and salicylic acid but benzaldehyde is not. Planta 212, 119–126.

    Article  CAS  PubMed  Google Scholar 

  • KAMMERER, B., KAHLICH, R., BIEGERT, C., GLEITER, C. H., and HEIDE, L., 2005. HPLC-MS/MS analysis of willow bark extracts contained in pharmaceutical preparations. Phytochem. Analysis 16, 470–478.

    Article  CAS  Google Scholar 

  • LARSON, P. R. and ISEBRANDS, J. G., 1971. The plastochron index as applied to developmental studies of cottonwood. Can. J. Forest Res. 1, 1–11.

    Article  Google Scholar 

  • LINDROTH, R. L. and HWANG, S. Y., 1996. Clonal variation of foliar chemistry of quaking aspen (Populus tremuloides Michx.). Biochem. Syst. Ecol. 24, 357–364.

    Article  CAS  Google Scholar 

  • LONG, M. C., NAGEGOWDA, D. A., KAMINAGA, Y., HO, K. K., KISH, C. M., SCHNEPP, J., SHERMAN, D., WEINER, H., RHODES, D., and DUDAREVA, N. 2009. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Plant J. 59:256–265.

    Article  CAS  PubMed  Google Scholar 

  • MOKLE, S. S., DAWANE, B. S., SAYYED, M. A., and VIBHUTE, Y. B., 2006. An improved procedure for the synthesis of 2-hydroxybenzaldehyde and 2-hydroxynaphthalene-1-carbaldehyde. J. Chem. Res. 101, 101.

    Article  Google Scholar 

  • MORSE, A. M., TSCHAPLINSKI, T. J., DERVINIS, C., PIJUT, P. M., SCHMELZ, E. A., DAY, W., and DAVIS, J. M., 2007. Salicylate and catechol levels are maintained in nahG transgenic poplar. Phytochemistry 68, 2043–2052.

    Article  CAS  PubMed  Google Scholar 

  • ORLOVA, I., MARSHALL-Colon, A., SCHNEPP, J., WOOD, B., VARBANOVA, M., FRIDMAN, E., BLAKESLEE, J. J., PEER, W. A., MURPHY, A. S., RHODES, D., PICHERSKY, E., and DUDAREVA, N.. 2006. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475.

    Article  CAS  PubMed  Google Scholar 

  • OSIER, T. L. and LINDROTH, R. L., 2001. Effects of genotype, nutrient availability, and defoliation on aspen phytochemistry and insect performance. J. Chem. Ecol. 27, 1289–1313.

    Article  CAS  PubMed  Google Scholar 

  • PALO, R. T., 1984. Distribution of birch (Betula spp.), willow (Salix spp.), and poplar (Populus spp.) secondary metabolites and their potential role as chemical defense against herbivores. J. Chem. Ecol. 10, 499–520.

    Article  CAS  Google Scholar 

  • PEARL, I. A. and DARLING, S. F., 1970. The structures of salicortin and tremulacin. Tetrahedron Lett. 11, 3827–3830.

    Article  Google Scholar 

  • PEARL, I. A. and DARLING, S. F., 1971. The structures of salicortin and tremulacin. Phytochemistry 10, 3161–3166.

    Article  CAS  Google Scholar 

  • PIERPONT, W. S., 1994. Salicylic acid and its derivatives in plants: Medicines, metabolites and messenger molecules. Adv. Bot. Res. 20, 163–235.

    Article  Google Scholar 

  • RUUHOLA, T. and JULKUNEN-TIITTO, R., 2003. Trade-off between synthesis of salicylates and growth of micropropagated Salix pentandra. J. Chem. Ecol. 29, 1565–1588.

    Article  CAS  PubMed  Google Scholar 

  • RUUHOLA, T., TIKKANEN, O. P., and TAHVANAINEN, J., 2001. Differences in host use efficiency of larvae of a generalist moth, Operophtera brumata on three chemically divergent Salix species. J. Chem. Ecol. 27, 1595–1615.

    Article  CAS  PubMed  Google Scholar 

  • RUUHOLA, T., JULKUNEN-TIITTO, R., and VAINIOTALO, P., 2003. In vitro degradation of willow salicylates. J. Chem. Ecol. 29, 1083–1097.

    Article  CAS  PubMed  Google Scholar 

  • SETAMDIDEH, D. and ZEYNIZADEH, B., 2006. Mild and convenient method for reduction of carbonyl compounds with the NaBH4/charcoal system in wet THF. Z. Naturforsch. B 61, 1275–1281.

    CAS  Google Scholar 

  • TSAI, C.-J., HARDING, S. A., TSCHAPLINSKI, T. J., LINDROTH, R. L., and YUAN, Y., 2006. Genome-wide analysis of the structural genes regulating defense phenylpropanoid metabolism in Populus. New Phytol. 172, 47–62.

    Article  CAS  PubMed  Google Scholar 

  • TUSKAN, G. A., DIFAZIO, S. P., JANSSON, S., BOHLMANN, J., et al. 2006. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313, 1596–1604.

    Article  CAS  PubMed  Google Scholar 

  • VOGT, T. and JONES, P., 2000. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci. 5, 359–403.

    Article  Google Scholar 

  • WINKEL, B. S. J., 2004. Metabolic channeling in plants. Annu. Rev. Plant Biol. 55, 85–107.

    Article  CAS  PubMed  Google Scholar 

  • ZENK, M. H., 1967. Pathways of salicyl alcohol and salicin formation in Salix purpurea L. Phytochemistry 6, 245–252.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Shiyue Fang (Michigan Tech, Houghton, MI, USA) for providing advice and equipment that facilitated the chemical synthesis of salicylaldehyde and salicyl alcohol, Dr. Richard L. Lindroth (U. Wisconsin, Madison, WI, USA) for providing purified salicortin standard, Dr. Bernd Schneider (Max Plank Institute for Chemical Ecology, Jena, Germany) for providing purified isosalicin, and Dr. Kenneth Raffa (U. Wisconsin, Madison, WI, USA) for cuttings of P. nigra clone NC5271. This work was funded by NSF Plant Genome grant DBI-0421756 (to CJT and SAH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Babst.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig S1

(DOCX 143 kb)

Fig S2

(DOCX 222 kb)

Fig S3

(DOCX 288 kb)

Fig S4

(DOCX 106 kb)

Fig S5

(DOCX 84.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babst, B.A., Harding, S.A. & Tsai, CJ. Biosynthesis of Phenolic Glycosides from Phenylpropanoid and Benzenoid Precursors in Populus . J Chem Ecol 36, 286–297 (2010). https://doi.org/10.1007/s10886-010-9757-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9757-7

Keywords

Navigation