Skip to main content
Log in

Impact of Herbivore-induced Plant Volatiles on Parasitoid Foraging Success: A Spatial Simulation of the Cotesia rubecula, Pieris rapae, and Brassica oleracea System

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Many parasitoids are known to use herbivore-induced plant volatiles as cues to locate hosts. However, data are lacking on how much of an advantage a parasitoid can gain from following these plant cues and which factors can limit the value of these cues to the parasitoid. In this study, we simulate the Cotesia rubecula–Pieris rapae–Brassica oleracea system, and ask how many more hosts can a parasitoid attack in a single day of foraging by following plant signals versus randomly foraging. We vary herbivore density, plant response time, parasitoid flight distance, and available host stages to see under which conditions parasitoids benefit from herbivore-induced plant cues. In most of the parameter combinations studied, parasitoids that responded to cues attacked more hosts than those that foraged randomly. Parasitoids following plant cues attacked up to ten times more hosts when they were able to successfully attack herbivores older than first instar; however, if parasitoids were limited to first instar hosts, those following plant cues were at a disadvantage when plants took longer than a day to respond to herbivory. At low herbivore densities, only parasitoids with a larger foraging radius could take advantage of plant cues. Although preference for herbivore-induced volatiles was not always beneficial for a parasitoid, under the most likely natural conditions, the model predicts that C. rubecula gains fitness from following plant cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrams, P. A., and Kawecki, T. J. 1999. Adaptive host preference and the dynamics of host-parasitoid interactions. Theor. Popul. Biol. 56:307–324.

    Article  PubMed  CAS  Google Scholar 

  • Agelopoulos, N. G., and Keller, M. A. 1994. Plant-natural enemy association in tritrophic system, Cotesia rubecula–Pieris rapae–Brassicaceae (Cruciferae). III: Collection and identification of plant and frass volatiles. J. Chem. Ecol. 20:1955–1967.

    Article  CAS  Google Scholar 

  • Bartlett, B. R. 1964. Patterns in the host feeding habit of adult parasitic Hymenoptera. Ann. Entomol. Soc. Amer. 57:344–350.

    Google Scholar 

  • Benrey, B., and Denno, R. F. 1997. The Slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology 78:987–999.

    Google Scholar 

  • Blaakmeer, A., Geervliet, J. B. F., van Loon, J. J. A., Posthumus, M. A., van Beek, T. A., and de Groot, A. 1994. Comparative headspace analysis of cabbage plants damaged by two species of Pieris caterpillars: consequences for in-flight host location by Cotesia parasitoids. Entomol. Exp. Appl. 73:175–182.

    Article  Google Scholar 

  • Bottrell, D. G., Barbosa, P., and Gould, F. 1998. Manipulating natural enemies by plant variety selection and modification: a realistic strategy? Annu. Rev. Entomol. 43:347–367.

    Article  PubMed  CAS  Google Scholar 

  • Coleman, R. A., Barker, A. M., and Fenner, M. 1999. Parasitism of the herbivore Pieris brassicae L. (Lep., Pieridae) by Cotesia glomerata (Hym., Braconidae) does not benefit the host plant by reduction of herbivory.. J. Appl. Entomol. 123:171–177.

    Article  Google Scholar 

  • Degenhardt, J., Gershenzon, J., Baldwin, I. T., and Kessler, A. 2003. Attracting friends to feast on foes: engineering terpene emission to make crop plants more attractive to herbivore enemies. Curr. Opin. Biotechnol. 14:169–176.

    Article  PubMed  CAS  Google Scholar 

  • Dempster, J. P. 1967. The control of Pieris rapae with DDT. I. The natural mortality of the young stages of Pieris. J. Appl. Ecol. 4:485–500.

    Article  Google Scholar 

  • Dicke, M. 1999. Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods. Entomol. Exp. Appl. 91:131–142.

    Article  CAS  Google Scholar 

  • Dicke, M., and Takabayashi, J. 1991. Specificity of induced indirect defence of plants against herbivores. Redia 74:105–113.

    Google Scholar 

  • Dicke, M., Sabelis, M. W., Takabayashi, J., Bruin, J., and Posthumus, M. A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J. Chem. Ecol. 16:3091–3118.

    Article  CAS  Google Scholar 

  • Dunning, J. B. J., Stewart, D. J., Danielson, B. J., Noon, B. R., Root, T. L., Lamberson, R. H., and Stevens, E. E. 1995. Spatially explicit population models: current forms and future uses. Ecol. Appl. 5:3–11.

    Article  Google Scholar 

  • Elkinton, J. S., Schal, C., Ono, T., and Carde, R. T. 1987. Pheromone puff trajectory and upwind flight of male gypsy moths in a forest. Physiol. Entomol. 12:399–406.

    Article  Google Scholar 

  • Fatouros, N. E., Van Loon, J. J. A., Hordijk, K. A., Smid, H. M., and Dicke, M. 2005. Herbivore-induced plant volatiles mediate in-flight host discrimination by parasitoids. J. Chem. Ecol. 31:2033–2047.

    Article  PubMed  CAS  Google Scholar 

  • Fritzsche-Hoballah, M. E.F., Tamo, C., and Turlings, T. C. J. 2002. Differential attractiveness of induced odors emitted by eight maize varieties for the parasitoid Cotesia marginiventris: is quality or quantity important? J. Chem. Ecol. 28:951–968.

    Article  Google Scholar 

  • Geervliet, J. B. F., Vet, L. E. M., and Dicke, M. 1994. Volatiles from damaged plants as major cues in long-range host-searching by the specialist parasitoid Cotesia rubecula. Entomol. Exp. Appl. 73:289–297.

    Article  CAS  Google Scholar 

  • Geervliet, J. B. F., Ariens, S., Dicke, M., and Vet, L. E. M. 1998. Long-distance assessment of patch profitability through volatile infochemicals by the parasitoids Cotesia glomerata and Cotesia rubecula (Hymenoptera: Braconidae). Biol. Control 11:113–121.

    Article  Google Scholar 

  • Gouinguene, S., Alborn, H., and Turlings, T. C. J. 2003. Induction of volatile emissions in maize by different larval instars of Spodoptera littoralis. J. Chem. Ecol. 29:145–162.

    Article  PubMed  CAS  Google Scholar 

  • Harcourt, D. G. 1966a. Major factors in survival of the immature stages of Pieris rapae (L.). Can. Entomol. 98:653–662.

    Article  Google Scholar 

  • Harcourt, D. G. 1966b. Sequential sampling for the imported cabbageworm, Pieris rapae (L.). Can. Entomol. 98:741–746.

    Google Scholar 

  • James, D. G., and Price, T. S. 2004. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops. J. Chem. Ecol. 30:1613–1628.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, A., Sabelis, M. W., and Bruin, J. 2002. Evolution of herbivore-induced plant volatiles. Oikos 97:134–138.

    Article  Google Scholar 

  • Jones, R. E. 1977. Movement patterns and egg distribution in cabbage butterflies. J. Anim. Ecol. 46:195–212.

    Article  Google Scholar 

  • Jones, R. E. 1987. Ants, parasitoids, and the cabbage butterfly Pieris rapae. J. Anim. Ecol. 56:739–749.

    Article  Google Scholar 

  • Jones, R. E., and Ives, P. M. 1979. The adaptiveness of searching and host selection behaviour in Pieris rapae. J. Anim. Ecol. 4:75–86.

    Google Scholar 

  • Jones, R. E., Nealis, V. G., Ives, P. M., and Scheermeyer, E. 1987. Seasonal and spatial variation in the juvenile survival of cabbage butterfly Pieris rapae: evidence for patchy density dependence. J. Anim. Ecol. 56:723–737.

    Article  Google Scholar 

  • Kaiser, L., and Carde, R. T. 1992. In-flight orientation to volatiles from the plant-host complex in Cotesia rubecula (Hymenoptera: Braconidae): increased sensitivity through olfactory experience. Physiol. Entomol. 17:62–67.

    Article  Google Scholar 

  • Kaiser, L., Willis, M. A., and Carde, R. T. 1994. Flight manoevers used by a parasitic wasp to locate host-infested plant. Entomol. Exp. Appl. 70:285–294.

    Article  Google Scholar 

  • Keller, M. A. 1990. Response of the parasitoid Cotesia rubecula to its host Pieris rapae in a flight tunnel. Entomol. Exp. Appl. 57:243–249.

    Article  Google Scholar 

  • Lewis, W. J., and Martin, W. R. Jr. 1990. Semiochemicals for use with parasitoids: status and future. J. Chem. Ecol. 16:3067–3089.

    Article  CAS  Google Scholar 

  • Mattiacci, L., and Dicke, M. 1995. Host-age discrimination during host location by Cotesia glomerata, a larval parasitoid of Pieris brassicae. Entomol. Exp. Appl. 76:37–48.

    Article  Google Scholar 

  • Mattiacci, L., Rocca, B. A., Scascighini, N., D'Alessandro, M., Hern, A., and Dorn, S. 2001. Systemically induced plant volatiles emitted at the time of danger. J. Chem. Ecol. 27:2233–2252.

    Article  PubMed  CAS  Google Scholar 

  • Murlis, J., Willis, M. A., and Carde, R. T. 2000. Spatial and temporal structures of pheromone plumes in fields and forests. Physiol. Entomol. 25:211–222.

    Article  CAS  Google Scholar 

  • Nealis, V. G. 1990. Factors affecting the rate of attack by Cotesia rubecula (Hymenoptera: Braconidae). Ecol. Entomol. 15:163–168.

    Article  Google Scholar 

  • Nordlund, D. A., Lewis, W. J., and Altieri, M. A. 1988. Influences of plant-produced allelochemicals on the host/prey selection behavior of entomophagous insects, pp. 65–96, in P. Barbosa, and D. K. Letourneau (eds.). Novel Aspects of Insect-Plant InteractionsWiley, New York.

    Google Scholar 

  • Parker, F. D. 1970. Seasonal mortality and survival of Pieris rapae (Lepidoptera: Pieridae) in Missouri and the effect of introducing an egg parasite, Trichogramma evanescens. Ann. Entomol. Soc. Amer. 63:985–994.

    Google Scholar 

  • Puente, M. E. 2007. Synchrony of herbivore presence, induced plant volatiles, and parasitoid response. PhD Dissertation. North Carolina State University, Raleigh. http://www.lib.ncsu.edu/theses/available/etd-03202007–165428/unrestricted/etd.pdf

  • Puente, M. E., Kennedy, G. C., and Gould, F. 2008. The impact of herbivore-induced plant volatiles on parasitoid foraging success: a general deterministic model. J. Chem. Ecol. DOI 10.1007/s10886-008-9471-x.

  • Richards, O. W. 1940. The biology of the small white butterfly (Pieris rapae) with special reference to the factors controlling its abundance. J. Anim. Ecol. 9:234–288.

    Google Scholar 

  • Root, R. B., and Kareiva, P. M. 1984. The search for resources by cabbage butterflies (Pieris rapae): ecological consequences and adaptive significance of Markovian movements in a patchy environment. Ecology 65:147–165.

    Article  Google Scholar 

  • Sato, Y., and Ohsaki, N. 2004. Response of the wasp (Cotesia glomerata) to larvae of the large white butterfly (Pieris brassicae). Ecol. Res. 19:445–449.

    Article  Google Scholar 

  • Tenhumberg, B., Keller, M. A., Possingham, H. P., and Tyre, A. J. 2001. Optimal patch-leaving behaviour: a case study using the parasitoid Cotesia rubecula. J. Anim. Ecol. 70:683–691.

    Article  Google Scholar 

  • van der Meijden, E., and Klinkhamer, P. G. L. 2000. Conflicting interests of plants and the natural enemies of herbivores. Oikos 89:202–208.

    Article  Google Scholar 

  • van Driesche, R. G. 1988. Survivorship patterns of larvae of Pieris rapae (L.) (Lepidoptera: Pieridae) in Massachusetts kale, with special reference to mortality due to Apanteles glomeratus (L.) (Hymenoptera: Braconidae). Bull. Entomol. Res. 78:397–405.

    Article  Google Scholar 

  • van Driesche, R. G., and Bellows, T. S. Jr. 1988. Host and parasitoid recruitment for quantifying losses from parasitism, with reference to Pieris rapae and Cotesia glomerata. Ecol. Entomol. 13:215–222.

    Article  Google Scholar 

  • van Driesche, R. G., Nunn, C., Kreke, N., Goldstein, G., and Benson, J. 2003. Laboratory and field host preferences of introduced Cotesia spp. parasitoids (Hymenoptera: Braconidae) between native and invasive Pieris butterflies. Biol. Control 28:214–221.

    Article  Google Scholar 

  • Vos, M., Hemerik, L., and Vet, L. E. M. 1998. Patch exploitation by the parasitoids Cotesia rubecula and Cotesia glomerata in multi-patch environments with different host distributions. J. Anim. Ecol. 67:774–783.

    Article  Google Scholar 

  • Wang, Q., Gu, H., and Dorn, S. 2004. Genetic relationship between olfactory response and fitness in Cotesia glomerata (L.). Heredity 92:579–584.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mathieu Legros for programming assistance. Comments by Coby Schal, Nick Haddad, and anonymous reviewers improved the manuscript. Funding for this research was provided by a National Science Foundation Pre-doctoral Fellowship and by the Keck Center for Behavioral Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred Gould.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10886_2008_9472_MOESM1_ESM.doc

Table 1 Relative advantage for parasitoids that followed signals, calculated as the number of hosts attacked by parasitoids following signals minus the number attacked by parasitoids randomly foraging, divided by the number attacked by randomly foraging parasitoids. Negative numbers indicate that randomly foraging parasitoids had a higher relative advantage than parasitoids following signals (pink colors accompany negative numbers and blue colors accompany positive numbers. The color intensity reflects the magnitude of the number—see below). The columns are as follows: “Induction” is the induction delay in days, “Relaxation” is the relaxation delay in days, “Density” is the herbivore host density, “Host” is the oldest viable instar host, “Distance” refers to the distance bias of the parasitoid, and “Pattern” is which pattern the parameter combinations were classified as. In the Distance column, “Exp” refers to an exponential signal bias, and “Lin” refers to a linear signal bias (DOC 540 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puente, M., Magori, K., Kennedy, G.G. et al. Impact of Herbivore-induced Plant Volatiles on Parasitoid Foraging Success: A Spatial Simulation of the Cotesia rubecula, Pieris rapae, and Brassica oleracea System. J Chem Ecol 34, 959–970 (2008). https://doi.org/10.1007/s10886-008-9472-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9472-9

Keywords

Navigation