Skip to main content
Log in

Pollinator and Herbivore Attraction to Cucurbita Floral Volatiles

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Mutualists and antagonists may place conflicting selection pressures on plant traits. For example, the evolution of floral traits is typically studied in the context of attracting pollinators, but traits may incur fitness costs if they are also attractive to antagonists. Striped cucumber beetles (Acalymma vittatum) feed on cucurbits and are attracted to several volatiles emitted by Cucurbita blossoms. However, the effect of these volatiles on pollinator attraction is unknown. Our goal was to determine whether pollinators were attracted to the same or different floral volatiles as herbivorous cucumber beetles. We tested three volatiles previously found to attract cucumber beetles in a factorial design to determine attraction of squash bees (Peponapis pruinosa), the specialist pollinators of cucurbita species, as well as the specialist herbivore A. vittatum. We found that 1,2,4-trimethoxybenzene was attractive to both the pollinator and the herbivore, indole was attractive only to the herbivore, and (E)-cinnamaldehyde was attractive only to the pollinator. There were no interactions among volatiles on attraction of squash bees or cucumber beetles. Our results suggest that reduced indole emission could benefit plants by reducing herbivore attraction without loss of pollination, and that 1,2,4-trimethoxybenzene might be under conflicting selection pressure from mutualists and antagonists. By examining the attraction of both mutualists and antagonists to Cucurbita floral volatiles, we have demonstrated the potential for some compounds to influence only one type of interaction, while others may affect both interactions and possibly result in tradeoffs. These results shed light on the potential evolution of fragrance in native Cucurbita, and may have consequences for yield in agricultural settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adler, L. S. 2007. Selection by pollinators and herbivores on attraction and defense, in K. J. Tilmon (ed.). Specialization, Speciation and Radiation: The Evolutionary Biology of Herbivorous Insects. University of California Press, Berkley (in press).

  • Adler, L. S., and Bronstein, J. L. 2004. Attracting antagonists: Does floral nectar increase leaf herbivory? Ecology 85:1519–1526.

    Article  Google Scholar 

  • Adler, L. S., Wink, M., Distl, M., and Lentz, A. J. 2006. Leaf herbivory and nutrients increase nectar alkaloids. Ecol. Lett. 9:960–967.

    Article  PubMed  Google Scholar 

  • Allen-Wardell, G., Bernhardt, P., Bitner, R., Burquez, A., Buchmann, S., Cane, J., Cox, P. A., Dalton, V., Feinsinger, P., Ingram, M., Inouye, D., Jones, C. E., Kennedy, K., Kevan, P., Koopowitz, H., Medellin, R., Medellin-morales, S., Nabhan, G. P., Pavlik, B., Tepedino, V., Torchio, P., and Walker, S. 1998. The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv. Biol. 12:8–17.

    Article  Google Scholar 

  • Andersen, J. F. and Metcalf, R. L. 1986. Identification of a volatile attractant for Diabrotica (Coleoptera, Chrysomelidae) and Acalymma (Coleoptera, Chrysomelidae) spp from blossoms of Cucurbita maxima Duchesne. J. Chem. Ecol. 12:687–699.

    Article  CAS  Google Scholar 

  • Andersen, J. F. and Metcalf, R. L. 1987. Factors influencing distribution of Diabrotica spp (Coleoptera, Chyrsomelidae) in blossoms of cultivated Cucurbita spp. J. Chem. Ecol. 13:681–699.

    Article  CAS  Google Scholar 

  • Ashman, T. L., Bradburn, M., Cole, D. H., Blaney, B. H., and Raguso, R. A. 2005. The scent of a male: The role of floral volatiles in pollination of a gender dimorphic plant. Ecology 86:2099–2105.

    Article  Google Scholar 

  • Ashman T.L., Cole, D. H., and Bradburn, M. 2004a. Sex-differential resistance and tolerance to herbivory in a gynodioecious wild strawberry. Ecology 85:2550–2559.

    Article  Google Scholar 

  • Ashman T. L., Knight, T. M., Steets, J. A., Amarasekare, P., Burd, M., Campbell, D. R., Dudash, M. R., Johnston, M. O., Mazer, S. J., Mitchell, R. J., Morgan, M. T., and Wilson, W. G. 2004b. Pollen limitation of plant reproduction: Ecological and evolutionary causes and consequences. Ecology 85:2408–2421.

    Article  Google Scholar 

  • Bach, C. E. 1977. Distribution of Acalymma vittata and Diabrotica virgifera (Coleoptera: Chrysomelidae) on cucurbits. The Great Lakes Entomologist 10:123–125.

  • Becerra, J. X. 1997. Insects on plants: Macroevolutionary chemical trends in host use. Science 276:253–256.

    Article  PubMed  CAS  Google Scholar 

  • Brody, A. K. and Mitchell, R. J. 1997. Effects of experimental manipulation of inflorescence size on pollination and pre-dispersal seed predation in the hummingbird-pollinated plant Ipomopsis aggregata. Oecologia 110:86–93.

    Article  Google Scholar 

  • Cosse, A. A. and Baker, T. C. 1999. Electrophysiologically and behaviorally active volatiles of buffalo gourd root powder for corn rootworm beetles. J. Chem. Ecol. 25:51–66.

    Article  CAS  Google Scholar 

  • Cunningham, J. P., Moore, C. J., Zalucki, M. P., and West, S. A. 2004. Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207:87–94.

    Article  PubMed  Google Scholar 

  • De Moraes, C. M., Lewis, W. J., Pare, P. W., Alborn, H. T., and Tumlinson, J. H. 1998. Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573.

    Article  Google Scholar 

  • Deisig, N., Giurfa, M., Lachnit, H., and Sandoz, J. C. 2006. Neural representation of olfactory mixtures in the honeybee antennal lobe. Eur. J. Neurosci. 24:1161–1174.

    Article  PubMed  Google Scholar 

  • Dodd, M. E., Silvertown, J., and Chase, M. W. 1999. Phylogenetic analysis of trait evolution and species diversity variation among angiosperm families. Evolution 53:732–744.

    Article  Google Scholar 

  • Euler, M. and Baldwin, I. T. 1996. The chemistry of defense and apparency in the corollas of Nicotiana attenuata. Oecologia 107:102–112.

    Article  Google Scholar 

  • Farrell, B. D. and Mitter, C. 1998. The timing of insect/plant diversification: Might Tetraopes (Coleoptera : Cerambycidae) and Asclepias (Asclepiadaceae) have co-evolved? Biol. J. Linn. Soc. 63:553–577.

    Article  Google Scholar 

  • Ferrari, M. J., Stephenson, A. G., Mescher, M. C., and De Moraes, C. M. 2006. Inbreeding effects on blossom volatiles in Cucurbita pepo subsp texana (Cucurbitaceae). Am. J. Bot. 93:1768–1774.

    CAS  Google Scholar 

  • Galen, C. and Cuba, J. 2001. Down the tube: Pollinators, predators, and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution 55:1963–1971.

    PubMed  CAS  Google Scholar 

  • Galen, C., Zimmer, K. A., and Newport, M. E. 1987. Pollination in floral scent morphs of Polemonium viscosum—a mechanism for disruptive selection on flower size. Evolution 41:599–606.

    Article  Google Scholar 

  • Gomez, J. M. and Zamora, R. 2000. Spatial variation in the selective scenarios of Hormathophylla spinosa (Cruciferae). Am. Nat. 155:657–668.

    Article  PubMed  Google Scholar 

  • Granero, A. M., Gonzalez, F. J. E., Frenich, A. G., Sanz, J. M. G., and Vidal, J. L. M. 2004. Single step determination of fragrances in Cucurbita flowers by coupling headspace solid-phase microextraction low-pressure gas chromatography-tandem mass spectrometry. J. Chromatogr. A 1045:173–179.

    Article  PubMed  CAS  Google Scholar 

  • Herrera, C. M. 2000. Measuring the effects of pollinators and herbivores: Evidence for non-additivity in a perennial herb. Ecology 81:2170–2176.

    Article  Google Scholar 

  • Hoffmann, M. P., Robinson, R. W., Kyle, M. M., and Kirkwyland, J. J. 1996. Defoliation and infestation of Cucurbita pepo genotypes by diabroticite beetles. Hortscience 31:439–442.

    Google Scholar 

  • Huber, F. K., Kaiser, R., Sauter, W., and Schiestl, F. P. 2005. Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–575.

    Article  PubMed  Google Scholar 

  • Hurd, P. D., Linsley, E. G., and Michelbacher, A. E. 1974. Ecology of the squash and gourd bee, Peponapis pruinosa, on cultivated cucurbits in California (Hymenoptera: Apoidea). Smithson. Contrib. Zool. 168:1–17.

    Google Scholar 

  • Hurd, P. D., Linsley, E. G., and Whitaker, T. M. 1971. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evolution 25:218–234.

    Article  Google Scholar 

  • Lampman, R. L., and Metcalf, R. L. 1987. Multicomponent kairomonal lures for southern and western corn rootworms (Coleoptera, Chrysomelidae, Diabrotica spp). J. Ecol. Entomol. 80:1137–1142.

    Google Scholar 

  • Lewis, P. A., Lampman, R. L., and Metcalf, R. L. 1990. Kairomonal attractants for Acalymma vittatum (Coleoptera, Chrysomelidae). Environ. Entomol. 19:8–14.

    CAS  Google Scholar 

  • McGregor, S. E. 1976. Insect pollination of cultivated crop plants. U.S. Department of Agriculure, Agricultural Research Service, Washington, D.C.

    Google Scholar 

  • Metcalf, R. L. and Lampman, R. L. 1991. Evolution of diabroticite rootworm beetle (Chrysomelidae) receptors for Cucurbita blossom volatiles. Proc. Natl. Acad. Sci. U.S.A. 88:1869–1872.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, R. L. and Metcalf, E. R. 1992. Plant Kairomones in Insect Ecology and Control. Chapman and Hall, New York.

    Google Scholar 

  • Metcalf, R. L., Lampman, R. L., and Deemdickson, L. 1995. Indole as an olfactory synergist for volatile kairomones for diabroticite beetles. J. Chem. Ecol. 21:1149–1162.

    Article  CAS  Google Scholar 

  • Michener, C. D., Mcginley, R. J., and Danforth, B. N. 1994. The Bee Genera of North and Central America (Hymenoptera: Apoidea). Smithsonian Institution Press, Washington.

    Google Scholar 

  • Mitchell, T. B. 1960. Bees of the eastern United States. N. C. Agric. Exp. Stn. Tech. Bull. 1:1–538.

    Google Scholar 

  • Mitchell, T. B. 1962. Bees of the eastern United States. N. C. Agric. Exp. Stn. Tech. Bull. 2:1–557.

    Google Scholar 

  • Peterson, J. K., Horvat, R. J., and Elsey, K. D. 1994. Squash leaf glandular trichome volatiles—Identification and influence on behavior of female pickleworm moth Diaphania nitidalis (Stoll) (Lepidoptera, Pyralidae). J. Chem. Ecol. 20:2099–2109.

    Article  CAS  Google Scholar 

  • Pichersky, E., and Gershenzon, J. 2002. The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr. Opin. Plant Biol. 5:237–243.

    Article  PubMed  CAS  Google Scholar 

  • Quesada, M., Bollman, K., and STEPHENSON, A. G. 1995. Leaf damage decreases pollen production and hinders pollen performance in Cucurbita texana. Ecology 76:437–443.

    Article  Google Scholar 

  • Shuler, R. E., Roulston, T. H., and Farris, G. E. 2005. Farming practices influence wild pollinator populations on squash and pumpkin. J. Econ. Entomol. 98:790–795.

    Article  PubMed  Google Scholar 

  • Strauss, S. Y., and Irwin, R. E. 2004. Ecological and evolutionary consequences of multispecies plant–animal interactions. Ann. Rev. Ecol. Evol. Syst. 35:435–466.

    Article  Google Scholar 

  • Strauss, S. Y. and Whittall, J. B. 2006. Non-pollinator agents of selection on floral traits, pp. 120–138, in L. D. Harder and S. C. H. Barrett, (eds.). Ecology and Evolution of Flowers. Oxford University Press, Oxford.

    Google Scholar 

  • Theis, N. 2006. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J. Chem. Ecol. 32:917–927.

    Article  PubMed  CAS  Google Scholar 

  • Theis, N. and Raguso, R. A. 2005. The effect of pollination on floral fragrance in thistles. J. Chem. Ecol. 31:2581–2600.

    Article  PubMed  CAS  Google Scholar 

  • Theis, N., Lerdau, M., and Raguso, R. A. 2007. The challenge of attracting pollinators while evading floral herbivores: Patterns of fragrance emission in Cirsium arvense and Cirsium repandum (Asteraceae). Int. J. Plant Sci. 168:587–601.

    Article  Google Scholar 

  • Thompson, J. N., and Cunningham, B. M. 2002. Geographic structure and dynamics of coevolutionary selection. Nature 417:735–738.

    Article  PubMed  CAS  Google Scholar 

  • USDA Bee Biology and Systematics Laboratory. 2002. Processing bees that have been stored in alcohol so that they look nice and fluffy once pinned. Logan, Utah. http://online.sfsu.edu/∼beeplot/pdfs/washing%20bees.pdf.

Download references

Acknowledgements

We thank T’ai Roulston of the Department of Environmental Sciences at the University of Virginia for identifying pollinators, Araujo Farms in Dighton, MA, for the use of their butternut squash field, and S. Halpern, T. Roulston, and two anonymous reviewers for comments on the manuscript. This research was supported by a University of Massachusetts Amherst senior honors research grant awarded by the Commonwealth College to ESA, the National Science Foundation DEB 0542819 to NT, and a Northeastern Integrated Pest Management USDA grant to LSA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn S. Adler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, E.S., Theis, N. & Adler, L.S. Pollinator and Herbivore Attraction to Cucurbita Floral Volatiles. J Chem Ecol 33, 1682–1691 (2007). https://doi.org/10.1007/s10886-007-9337-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9337-7

Keywords

Navigation