Skip to main content
Log in

The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on \({\mathbb {R}}\) with periodic coefficients, and to Euler–Bernoulli systems in the same context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold, V.I.: Characteristic class entering in quantization conditions. Func. Anal. Appl. 1, 1–14 (1967)

    Article  Google Scholar 

  2. Arnold, V.I.: The Sturm theorems and symplectic geometry. Func. Anal. Appl. 19, 1–10 (1985)

    MathSciNet  Google Scholar 

  3. Artin, M.: Algebra. Prentice-Hall, Upper Saddle River (1991)

    MATH  Google Scholar 

  4. Booss-Bavnbek, B., Furutani, K.: The Maslov index: a functional analytical definition and the spectral flow formula. Tokyo J. Math. 21, 1–34 (1998)

    Article  MathSciNet  Google Scholar 

  5. Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs. Mathematical Surveys and Monographs, vol. 186. AMS, New York (2013)

    MATH  Google Scholar 

  6. Beck, M., Malham, S.: Computing the Maslov index for large systems. Proc. Am. Math. Soc. 143(5), 2159–2173 (2015)

    Article  MathSciNet  Google Scholar 

  7. Chardard, F., Dias, F., Bridges, T.J.: Computing the Maslov index of solitary waves. I. Hamiltonian systems on a four-dimensional phase space. Physics D 238, 1841–1867 (2009)

    Article  MathSciNet  Google Scholar 

  8. Chardard, F., Dias, F., Bridges, T.J.: Computing the Maslov index of solitary waves, part 2: phase space with dimension greater than four. Physics D 240, 1334–1344 (2011)

    Article  MathSciNet  Google Scholar 

  9. Chen, C.-N., Hu, X.: Maslov index for homoclinic orbits in Hamiltonian systems. Ann. I. H. Poincaré AN 24, 589–603 (2007)

    Article  Google Scholar 

  10. Chardard, F.: Stability of Solitary Waves, Doctoral thesis, Centre de Mathematiques et de Leurs Applications. T. J. Bridges, Advisor (2009)

  11. Cox, G., Jones, C., Latushkin, Y., Sukhtayenv, A.: The Morse and Maslov indices for multidimensional Schrödinger operators with matrix-valued potentials. Trans. Am. Math. Soc. 368(11), 8145–8207 (2016)

    Article  Google Scholar 

  12. Cappell, S., Lee, R., Miller, E.: On the Maslov index. Commun. Pure Appl. Math. 47, 121–186 (1994)

    Article  MathSciNet  Google Scholar 

  13. Deng, J., Jones, C.: Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems. Trans. Am. Math. Soc. 363, 1487–1508 (2011)

    Article  MathSciNet  Google Scholar 

  14. Dwyer, H.I., Zettl, A.: Computing eigenvalues of regular Sturm–Liouville problems. Electron. J. Differ. Equ. 1994, 1–10 (1994)

    MathSciNet  MATH  Google Scholar 

  15. Furutani, K.: Fredholm–Lagrangian–Grassmannian and the Maslov index. J. Geom. Phys. 51, 269–331 (2004)

    Article  MathSciNet  Google Scholar 

  16. Fabbri, R., Johnson, R., Núñez, C.: Rotation number for non-autonomous linear Hamiltonian systems I: basic properties. Z. Angew. Math. Phys. 54, 484–502 (2003)

    Article  MathSciNet  Google Scholar 

  17. Howard, P., Jung, S.: Spectral analysis of \(\theta \)-periodic Schrödinger operators and applications to periodic waves. J. Differ. Equ. (to appear)

  18. Howard, P., Latushkin, Y., Sukhtayev, A.: The Maslov index for Lagrangian pairs on \({\mathbb{R}}^{2n}\). J. Math. Anal. Appl. 451, 794–821 (2017)

    Article  MathSciNet  Google Scholar 

  19. Howard, P., Latushkin, Y., Sukhtayev, A.: The Maslov and Morse indices for Schrödinger operators on\({\mathbb{R}}\). to appear in Indiana Univ. Math. J. arXiv:1608.05692

  20. Howard, P., Sukhtayev, A.: The Maslov and Morse indices for Schrödinger operators on \([0,1]\). J. Differ. Equ. 260, 4499–4559 (2016)

    Article  Google Scholar 

  21. Jones, C.K.R.T.: Instability of standing waves for nonlinear Schrödinger-type equations. Ergod. Theory Dyn. Syst. 8, 119–138 (1988)

    Article  Google Scholar 

  22. Jones, C.K.R.T.: An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation. J. Differ. Equ. 71, 34–62 (1988)

    Article  Google Scholar 

  23. Jones, C.K.R.T., Latushkin, Y., Marangell, R.: The Morse and Maslov indices for matrix Hill’s equations. Proc. Symp. Pure Math. 87, 205–233 (2013)

    Article  MathSciNet  Google Scholar 

  24. Jones, C.K.R.T., Latushkin, Y., Sukhtaiev, S.: Counting spectrum via the Maslov index for one dimensional \(\theta \)-periodic Schrödinger operators. Proc. AMS 145, 363–377 (2017)

    Article  Google Scholar 

  25. Jones, C.K.R.T., Marangell, R.: The spectrum of travelling wave solutions to the sine-Gordon equation. Discrete Contin. Dyn. Syst. 5, 925–937 (2012)

    Article  MathSciNet  Google Scholar 

  26. Kuchment, P.: Quantum Graphs: I. Some Basic Structures. Waves in Random Media 14(1), S107–S128 (2004)

    Article  MathSciNet  Google Scholar 

  27. Latushkin, Y., Sukhtayev, A., Sukhtaiev, S.: The Morse and Maslov indices for Schrödinger operators. Preprint. arXiv:1411.1656 (2014)

  28. Maslov, V.P.: Theory of Perturbations and Asymptotic Methods. Izdat. Moskov. Gos. Univ. Moscow (1965). French tranlation Dunod, Paris, 1972

  29. Meyer, K., Hall, G., Offin, D.: Introduction to Hamiltonian Dynamical Systems and the \(N\)-Body Problem, 2nd edn. Springer, Berlin (2009)

    MATH  Google Scholar 

  30. Offin, D.: A spectral theorem for reversible second order equations with periodic coefficients. Differ. Integral Equ. 5, 615–629 (1992)

    MathSciNet  MATH  Google Scholar 

  31. Offin, D.: Variational structure of the zones of instability. Differ. Integral Equ. 14, 1111–1127 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Phillips, J.: Selfadjoint Fredholm operators and spectral flow. Can. Math. Bull. 39, 460–467 (1996)

    Article  Google Scholar 

  33. Papanicolaou, V.G.: The inverse periodic spectral theory of the Euler–Bernoulli equation. Dyn. PDE 2, 127–148 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Robbin, J., Salamon, D.: The Maslov index for paths. Topology 32, 827–844 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Research of S. Jung was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2016R1C1B1009978). Research of B. Kwon was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2015R1C1A1A02037662). This collaboration was made possible by P. Howard’s visit to Ulsan National Institute for Science and Technology in July 2016, and by S. Jung’s and B. Kwon’s visits to Texas A&M University in July 2017. The authors acknowledge the National Research Foundation of Korea for supporting these trips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Howard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Howard, P., Jung, S. & Kwon, B. The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]. J Dyn Diff Equat 30, 1703–1729 (2018). https://doi.org/10.1007/s10884-017-9625-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-017-9625-z

Keywords

Navigation