Skip to main content
Log in

Electronic and Optical Properties of Organic–Inorganic MASn1−xGexI3 Perovskites: A First-Principles Study

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In recent years, the search of lead-free perovskites have been investigated to obtain better structural stability and photovoltaic performance compared with the corresponding lead-based hybrid perovskites. In this work, we calculated the structural stabilities, electronic and optical properites of the mixed MASn1−xGexI3 perovskites using the HSE06 functional. The results indicate that our predicted mixed Sn–Ge perovskites are stable, but they are weaken than that of MASnI3. The calculated results show that these mixed perovskites possess direct band gaps from 1.22 to 1.74 eV. The calculated band gaps of the mixed Sn–Ge perovskites are in the suitable ranges for single-junction solar cell. The mixed MASn1−xGexI3 perovskites also possess strong optical absorption abilities in the visible light region. Based on our calculated results, these mixed Sn–Ge perovskites are potential candidates for photovoltaic applications. We expect that this work can provide a insight for further research on lead-free perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka (2009). J. Am. Chem. Soc.131, 6050–6051.

    Article  CAS  PubMed  Google Scholar 

  2. H. J. Snaith (2013). J. Phys. Chem. Lett.4, 3623–3630.

    Article  CAS  Google Scholar 

  3. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal, and S. I. Seok (2013). Nano Lett.13, 1764–1769.

    Article  CAS  PubMed  Google Scholar 

  4. M. A. Green, A. Ho-Baillie, and H. J. Snaith (2014). Nat. Photonics8, 506.

    Article  CAS  Google Scholar 

  5. N. NREL. Best Research-Cell Efficiences chart. https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies.pdf.

  6. C. C. Stoumpos, C. D. Malliakas, and M. G. Kanatzidis (2013). Inorg. Chem.52, 9019–9038.

    Article  CAS  PubMed  Google Scholar 

  7. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum, and C. Ballif (2014). J. Phys. Chem. Lett.5, 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  8. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel, and T. J. White (2013). J. Mater. Chem. A1, 5628–5641.

    Article  CAS  Google Scholar 

  9. Y. Shao, Z. Xiao, C. Bi, Y. Yuan, and J. Huang (2014). Nat. Commun.5, 5784.

    Article  CAS  PubMed  Google Scholar 

  10. L. Ma, F. Hao, C. C. Stoumpos, B. T. Phelan, M. R. Wasielewski, and M. G. Kanatzidis (2016). J. Am. Chem. Soc.138, 14750–14755.

    Article  CAS  PubMed  Google Scholar 

  11. C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, and M. G. Kanatzidis (2015). J. Am. Chem. Soc.137, 6804–6819.

    Article  CAS  PubMed  Google Scholar 

  12. Y. D. Zhang and J. Feng (2018). AIP Adv.8, 015218.

    Article  CAS  Google Scholar 

  13. J. I. Uribe, D. Ramirez, J. M. Osorio-Guillén, J. Osorio, and F. Jaramillo (2016). J. Phys. Chem. C120, 16393–16398.

    Article  CAS  Google Scholar 

  14. T. J. Jacobsson, M. Pazoki, A. Hagfeldt, and T. Edvinsson (2015). J. Phys. Chem. C119, 25673–25683.

    Article  CAS  Google Scholar 

  15. D. Pérez-del-Rey, D. Forgács, E. M. Hutter, T. J. Savenije, D. Nordlund, P. Schulz, J. J. Berry, M. Sessolo, and H. J. Bolink (2016). Adv. Mater.28, 9839–9845.

    Article  PubMed  CAS  Google Scholar 

  16. A. Kumar, K. R. Balasubramaniam, J. Kangsabanik, Vikram, and A. Alam (2016). Phys. Rev. B94, 180105.

    Article  Google Scholar 

  17. L. Jiang, T. Wu, L. Sun, Y.-J. Li, A.-L. Li, R.-F. Lu, K. Zou, and W.-Q. Deng (2017). J. Phys. Chem. C121, 24359–24364.

    Article  CAS  Google Scholar 

  18. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith (2014). Energy Environ. Sci.7, 3061–3068.

    Article  CAS  Google Scholar 

  19. T. Krishnamoorthy, H. Ding, C. Yan, W. L. Leong, T. Baikie, Z. Zhang, M. Sherburne, S. Li, M. Asta, N. Mathews, and S. G. Mhaisalkar (2015). J. Mater. Chem. A3, 23829–23832.

    Article  CAS  Google Scholar 

  20. Chem. Soc. 136, 8094-8099.

  21. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma, and S. Hayase (2014). J. Phys. Chem. Lett.5, 1004–1011.

    Article  CAS  PubMed  Google Scholar 

  22. P.-P. Sun, Q.-S. Li, S. Feng, and Z.-S. Li (2016). Phys. Chem. Chem. Phys.18, 14408–14418.

    Article  CAS  PubMed  Google Scholar 

  23. M.-G. Ju, J. Dai, L. Ma, and X. C. Zeng (2017). J. Am. Chem. Soc.139, 8038–8043.

    Article  CAS  PubMed  Google Scholar 

  24. N. Ito, M. A. Kamarudin, D. Hirotani, Y. Zhang, Q. Shen, Y. Ogomi, S. Iikubo, T. Minemoto, K. Yoshino, and S. Hayase (2018). J. Phys. Chem. Lett.9, 1682–1688.

    Article  CAS  PubMed  Google Scholar 

  25. Y.-Q. Zhao, L.-J. Wu, B. Liu, L.-Z. Wang, P.-B. He, and M.-Q. Cai (2016). J. Power. Sources.313, 96–103.

    Article  CAS  Google Scholar 

  26. D. Liu, Q. Li, J. Hu, R. Sa, and K. Wu (2019). J. Phys. Chem. C123, 12638–12646.

    Article  CAS  Google Scholar 

  27. G. Kresse and J. Furthmüller (1996). Comput. Mater. Sci.6, 15–50.

    Article  CAS  Google Scholar 

  28. P. E. Blöchl (1994). Phys. Rev. B50, 17953–17979.

    Article  Google Scholar 

  29. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett.77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  30. D. A. Egger and L. Kronik (2014). J. Phys. Chem. Lett.5, 2728–2733.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Wang, T. Gould, J. F. Dobson, H. Zhang, H. Yang, X. Yao, and H. Zhao (2014). Phys. Chem. Chem. Phys.16, 1424–1429.

    Article  CAS  PubMed  Google Scholar 

  32. C. Zheng and O. Rubel (2018). J. Phys. Chem. Lett.9, 874–880.

    Article  CAS  PubMed  Google Scholar 

  33. J. Heyd, G. E. Scuseria, and M. Ernzerhof (2003). J. Chem. Phys.118, 8207–8215.

    Article  CAS  Google Scholar 

  34. J. Heyd, G. E. Scuseria, and M. Ernzerhof (2006). J. Chem. Phys.124, 219906.

    Article  CAS  Google Scholar 

  35. J. Qian, B. Xu, and W. Tian (2016). Org. Electron.37, 61–73.

    Article  CAS  Google Scholar 

  36. V. M. Goldschmidt (1926). Naturwissenschaften14, 477–485.

    Article  CAS  Google Scholar 

  37. V. M. Goldschmidt (1927). Ber. Dtsch. Chem. Ges.60, 1263–1296.

    Article  Google Scholar 

  38. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, and Z. Guo (2008). Acta. Crystallogr. Sect. B64, 702–707.

    Article  CAS  Google Scholar 

  39. Y. Zhao and K. Zhu (2016). Chem. Soc. Rev.45, 655–689.

    Article  CAS  PubMed  Google Scholar 

  40. P.-P. Sun, Q.-S. Li, L.-N. Yang, and Z.-S. Li (2016). Nanoscale8, 1503–1512.

    Article  CAS  PubMed  Google Scholar 

  41. E. Mosconi, P. Umari, and F. De Angelis (2015). J. Mater. Chem. A3, 9208–9215.

    Article  CAS  Google Scholar 

  42. P. Umari, E. Mosconi, and F. De Angelis (2014). Sci. Rep.4, 4467.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. H.-J. Feng, T. R. Paudel, E. Y. Tsymbal, and X. C. Zeng (2015). J. Am. Chem. Soc.137, 8227–8236.

    Article  CAS  PubMed  Google Scholar 

  44. J. Xiang, K. Wang, B. Xiang, and X. Cui (2018). J. Chem. Phys.148, 124111.

    Article  PubMed  CAS  Google Scholar 

  45. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz, and H. J. Snaith (2014). Energy Environ. Sci.7, 982–988.

    Article  CAS  Google Scholar 

  46. J. Chang, H. Chen, H. Yuan, B. Wang, and X. Chen (2018). Phys. Chem. Chem. Phys.20, 941–950.

    Article  CAS  PubMed  Google Scholar 

  47. D. Liu, Q. Li, J. Hu, H. Jing, and K. Wu (2019). J. Mater. Chem. C7, 371–379.

    Article  CAS  Google Scholar 

  48. S. Saha, T. P. Sinha, and A. Mookerjee (2000). Phys. Rev. B62, 8828–8834.

    Article  CAS  Google Scholar 

Download references

Acknowlegements

This study was funded by the National Natural Science Foundation of China (No.21673240) and the Foreign Cooperation Project of Fujian Province (No. 2017I0019).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Wang or Kechen Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Sa, R., Wang, J. et al. Electronic and Optical Properties of Organic–Inorganic MASn1−xGexI3 Perovskites: A First-Principles Study. J Clust Sci 31, 1103–1109 (2020). https://doi.org/10.1007/s10876-019-01718-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01718-1

Keywords

Navigation