Skip to main content
Log in

X-ray Crystal Structures of Intermediates of the Stereoselective (±)-Grandisol Synthesis Based on the Remote Alkylation Protocol

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Starting from easily prepared (cyclobutylsulfonyl)benzene (1), a stereoselective synthesis of (±)-grandisol, accomplished in nine steps, with an overall yield of ca. 18 %, has been presented by Monteiro and Stefani (Eur J Org Chem 14:2659–2663, 2001). Most of the synthetic intermediates were secured in good to excellent yields as crystalline compounds requiring no or minimal purification, should being amenable to scale up. The structures and absolute stereochemistry of (2), (3), (4a), (5), (8) and (9) were established by IR and NMR (1H, 13C) spectroscopies and confirmed by X-ray diffraction analysis. Compound (2) crystallizes in orthorhombic Pbca, a = 16.0565(5), b = 9.5144(6), c = 23.9728(7) Å, the (3) crystallizes in monoclinic P21/c, a = 5.6390(5), b = 17.8630(16), c = 12.8678(12) Å and β = 111.928(7)°, the (4a) crystallizes in monoclinic P21/c, a = 5.7002(9) Å, b = 17.2752(14) Å, c = 14.9168(9) Å and β = 109.464(8)°. The other three cyclobutylsulfonyl derivatives crystallize in the same monoclinic space group P21/c with cell parameters (5) a = 8.072(4), b = 11.486(9), c = 14.565(8) Å and β = 101.373(4)°, (8) a = 11.3448(2), b = 7.9377(1), c = 18.5329(4) Å and β = 94.147(1)° and (9) a = 37.7571(9), b = 11.4434(3), c = 8.1824(2) Å and β = 90.748(1)°.

Graphical Abstract

X-ray crystal structures of six synthetic intermediates prepared from the stereoselective synthesis of (±)-grandisol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tumlinson JH, Gueldner RC, Hardee DD, Thompson AC, Hedin PA, Minyard JP (1971) J Org Chem 36:2616–2621

    Article  Google Scholar 

  2. Monteiro HJ, Stefani HA (2001) Eur J Org Chem 14:2659–2663

    Article  Google Scholar 

  3. Bernard AM, Frongia A, Olliver J, Piras PP, Secci F, Spiga M (2007) Tetrahedron 63:4968–4974

    Article  CAS  Google Scholar 

  4. Zarbin PHG, Villar JAFP, Corrêa AG (2007) J Braz Chem Soc 18:1100–1124

    Article  CAS  Google Scholar 

  5. Francke W, Bartels J, Krohn S, Schultz S, Baader E, Tengö J, Schneider D (1989) Pure Appl Chem 61:539–542

    Article  CAS  Google Scholar 

  6. Hooft RWW (1998) COLLECT: Nonius BV. Delft, The Netherlands

    Google Scholar 

  7. Otwinowski Z, Minor W (1997) In: Carter CW Jr, Sweet RM (eds) Processing of X-ray diffraction data collected in oscillation mode, methods in enzymology, macromolecular crystallography, part A, vol 276. Academic Press, New York, pp 307–326

    Google Scholar 

  8. Blessing RH (1995) Acta Cryst A51:33–38

    CAS  Google Scholar 

  9. Sheldrick GM (2008) Acta Cryst A64:112–122

    Google Scholar 

  10. Farrugia LJ (1997) J Appl Cryst 30:565

    Article  CAS  Google Scholar 

  11. Farrugia LJ (1999) J Appl Cryst 32:837–838

    Article  CAS  Google Scholar 

  12. Wilson ACJ (1992) Editor international tables of crystallography, vol C, mathematical, physical and chemical tables. Kluwer Academic Publishers, Dordrecht, p 693

    Google Scholar 

  13. Zukerman SJ, Monteiro HJ (1998) Acta Cryst C54:1673–1675

    Google Scholar 

  14. Zukerman SJ, Monteiro HJ (1998) Acta Cryst C54:96–97

    Google Scholar 

  15. Cremer D, Pople JA (1975) J Am Chem Soc 97:1354–1358

    Article  CAS  Google Scholar 

  16. Pauling L (1960) The nature of the chemical bonding, 3rd edn. Cornell University, Ithaca, New York

    Google Scholar 

  17. Silverstein RM, Webster FX (2000) Identificação espectrométrica de compostos orgânicos, 6ª edição. Livros Técnicos e Científicos, Rio de Janeiro, p 99

    Google Scholar 

Download references

Acknowledgments

This work was sponsored by grants from CNPq and FINEP (CT-INFRA 0970/01). GFS also gratefully acknowledges the financial support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Edital Universal-2007, Processo 307412/2008-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerimário F. de Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Sousa, G.F., Monteiro, H.J., Resck, I.S. et al. X-ray Crystal Structures of Intermediates of the Stereoselective (±)-Grandisol Synthesis Based on the Remote Alkylation Protocol. J Chem Crystallogr 43, 240–249 (2013). https://doi.org/10.1007/s10870-013-0411-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-013-0411-4

Keywords

Navigation