Skip to main content
Log in

CO substitution in the mixed-metal clusters PhCCo2Ni(CO)6Cp and PhCCo2Mo(CO)8Cp by (Z)-Ph2PCH=CHPPh2. X-ray diffraction structures and proof of ligand bridging in PhCCo2Ni(CO)4[(Z)-Ph2PCH=CHPPh2]Cp and PhCCo2Mo(CO)6[(Z)-Ph2PCH=CHPPh2]Cp

  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The heterometallic tetrahedrane clusters PhCCo2Ni(CO)6Cp (1) and PhCCo2Mo(CO)8Cp (3) react with the unsaturated diphosphine ligand (Z)-Ph2PCH=CHPPh2 at elevated temperature to afford the corresponding phosphine-substituted clusters PhCCo2Ni(CO)4[(Z)-Ph2PCH=CHPPh2]Cp (2) and PhCCo2Mo(CO)6[(Z)-Ph2PCH=CHPPh2]Cp (4). Clusters 2 and 4 have been isolated by column chromatography and characterized in solution by IR and NMR (1H and 31P) spectroscopies, and the solid-state structures of these clusters have been determined by X-ray crystallography. PhCCo2Ni(CO)4[(Z)-Ph2PCH=CHPPh2]Cp crystallizes in the triclinic space group P-l, a = 10.8142(7), b = 10.8994(6), c = 17.661(2) Å, α = 82.870(6), β = 86.149(7), γ = 64.493(5), V = 1864.0(2) Å3, Z = 2, Dcacl = 1.495 g/cm3; R = 0.0409, Rw = 0.0424 for 3147 observed reflections with I > 3σ(I). PhCCo2Mo(CO)6[(Z)-Ph2PCH=CHPPh2]Cp, as the hexane solvent, crystallizes in the monoclinic space group P21/c, a = 12.706(4), b = 17.367(3), c = 21.639(7) Å, β = 106.48(3), V = 4579(1) Å3, Z = 4, Dcacl = 1.478 g/cm3; R = 0.0605, Rw = 0.0724 for 1330 observed reflections with I > 3σ(I). The solid-state structures of 2 and 4 confirm a bridging coordination mode for the (Z)-Ph2PCH=CHPPh2 ligand, with adjacent cobalt centers being ligated by the ancillary phosphine ligand. The structural highlights of these new mixed-metal clusters are discussed relative to the homometallic tetrahedrane cluster PhCCo3(CO)7[(Z)-Ph2PCH=CHPPh2].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Downard, A. J.; Robinson, B. H.; Simpson, J. Organometallics 1986, 5, 1122. Collin, J.; Jossart, C.;

    Google Scholar 

  • Balavoine, G. Organometallics 1986, 5, 203.

    Google Scholar 

  • Aime, S.; Botta, M.; Gobetto, R.; Osella, D. J. Organomet. Chem. 1987, 320, 229.

    Google Scholar 

  • Yang, K.; Bott, S. G.; Richmond, M. G. J. Organomet. Chem. 1993, 454, 273.

    Google Scholar 

  • Beurich, H.; Vahrenkamp, H. Chem. Ber. 1981, 114, 2542.

    Google Scholar 

  • Don, M.-J.; Richmond, M. G.; Watson, W. H.; Krawiec, M.; Kashyap, R. P. J. Organomet. Chem. 1991, 418, 231.

    Google Scholar 

  • Choi, N.; Conole, G.; King, J. D.; Mays, M. J.; McPartlin, M.; Stone, C. L. J. Chem. Soc. Dalton Trans. 2000, 395.

  • Bott, S. G.; Wang, J. C.; Richmond, M. G. J. Chem. Crystallogr. 1998, 28, 401.

    Google Scholar 

  • Watson, W. H.; Nagl, A.; Hwang, S.; Richmond, M. G. J. Organomet. Chem. 1993, 445, 163.

    Google Scholar 

  • Yang, K.; Smith, J. M.; Bott, S. G.; Richmond, M. G. Organometallics 1993, 12, 4779.

    Google Scholar 

  • Shen, H.; Bott, S. G.; Richmond, M. G. Inorg. Chim. Acta 1996, 250, 195.

    Google Scholar 

  • Bott, S. G.; Shen, H.; Richmond, M. G. Struct. Chem. 2001, 12, 225.

    Google Scholar 

  • Hoffmann, R. Angew. Chem. Int. Ed. 1982, 21, 711.

    Google Scholar 

  • Albright, T. A.; Burdett, J. K.; Whangbo, M. H. Orbital Interactions in Chemistry; Wiley-Interscience: New York, 1985.

    Google Scholar 

  • Sutin, K. A.; Kolis, J. W.; Mlekuz, M.; Bougeard, P.; Sayer, B. G.; Quilliam, M. A.; Faggiani, R.; Lock, C. J. L.; McGlinchey, M. J.; Jaouen, G. Organometallics 1987, 6, 439.

    Google Scholar 

  • Sutin, K. A.; Li, L.; Frampton, C. S.; Sayer, B. G.; McGlinchey, M. J. Organometallics 1991, 10, 2362.

    Google Scholar 

  • Nestle, M. O.; Hallgren, J. E.; Seyferth, D. Inorg. Synth. 1980, 20, 226.

    Google Scholar 

  • Beurich, H.; Blumhofer, R.; Vahrenkamp, H. Chem. Ber. 1982, 115, 2409.

    Google Scholar 

  • Blumhofer, R.; Fischer, K.; Vahrenkamp, H. Chem. Ber. 1986, 119, 194.

    Google Scholar 

  • Shriver, D. F. The Manipulation of Air-Sensitive Compounds; McGraw-Hill: New York, 1969.

    Google Scholar 

  • Koelle, U. J. Organomet. Chem. 1977, 133, 53.

    Google Scholar 

  • Albers, M. O.; Coville, N. J. Coord. Chem. Rev. 1984, 53, 227.

    Google Scholar 

  • Bott, S. G.; Yang, K.; Richmond, M. G. Organometallics 2003, 22, 1383.

    Google Scholar 

  • Clark, D. T.; Sutin, K. A.; Perrier, R. E.; McGlinchey, M. J. Polyhedron 1988, 7, 2297.

    Google Scholar 

  • Garrou, P. E. Chem. Rev. 1981, 81, 229.

    Google Scholar 

  • Richmond, M. G.; Kochi, J. K. Organometallics 1987, 6, 254.

    Google Scholar 

  • Bott, S. G.; Wang, J. C; Shen, H.; Richmond, M. G. J. Chem. Crystallogr. 1999, 29, 391.

    Google Scholar 

  • See also: Beurich, H.; Vahrenkamp, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 863.

    Google Scholar 

  • Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc. Dalton Trans. 1989, SI.

  • Weast, R. C. (Ed.). Handbook of Chemistry and Physics; CRC Press: Cleveland, OH, 56th ed., 1975.

  • Duffy, D. N.; Kassis, M. M.; Rae, A. D. J. Organomet. Chem. 1993, 460, 97.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bott, S.G., Yang, K., Huang, SH. et al. CO substitution in the mixed-metal clusters PhCCo2Ni(CO)6Cp and PhCCo2Mo(CO)8Cp by (Z)-Ph2PCH=CHPPh2. X-ray diffraction structures and proof of ligand bridging in PhCCo2Ni(CO)4[(Z)-Ph2PCH=CHPPh2]Cp and PhCCo2Mo(CO)6[(Z)-Ph2PCH=CHPPh2]Cp. J Chem Crystallogr 34, 883–891 (2004). https://doi.org/10.1007/s10870-004-7723-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-004-7723-3

Navigation