Skip to main content
Log in

The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Bcl-2 family proteins are known to competitively regulate Ca2+; however, the specific inter-organelle signaling pathways and related cellular functions are not fully elucidated. In this study, a portion of Bcl-xL was detected at the ER-mitochondrion interface or MAM (mitochondria-associated ER membrane) in association with type 3 inositol 1,4,5-trisphosphate receptors (IP3R3); an association facilitated by the BH4 and transmembrane domains of Bcl-xL. Moreover, increasing Bcl-xL expression enhanced transient mitochondrial Ca2+ levels upon ER Ca2+ depletion induced by short-term, non-apoptotic incubation with thapsigargin (Tg), while concomitantly reducing cytosolic Ca2+ release. These mitochondrial changes appear to be IP3R3-dependent and resulted in decreased NAD/NADH ratios and higher electron transport chain oxidase activity. Interestingly, extended Tg exposure stimulated ER stress, but not apoptosis, and further enhanced TCA cycling. Indeed, confocal analysis indicated that Bcl-xL translocated to the MAM and increased its interaction with IP3R3 following extended Tg treatment. Thus, the MAM is a critical cell-signaling junction whereby Bcl-xL dynamically interacts with IP3R3 to coordinate mitochondrial Ca2+ transfer and alters cellular metabolism in order to increase the cells’ bioenergetic capacity, particularly during periods of stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AUC:

Area under the curve

BAPTA:

1,2-bis(o-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid

Bcl-2:

B-cell lymphoma-2

Bcl-xL :

B-cell lymphoma-extra large

BiP:

Binding immunoglobulin protein

Cyto:

Cytosol

DsRed:

Discosoma sp.red fluorescent protein

ERp75:

Endoplasmic reticulum resident protein 75

FRET:

Fluorescence energy resonance transfer

Grp75:

Glucose regulated protein 75

HcRed:

Heteractis crispa far-red fluorescent protein

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

His:

Histidine

IP3R:

Inositol 1,4,5-trisphophate receptor

IRE1:

Inositol-requiring enzyme 1

KHB:

Krebs-HEPES Buffer

MAM:

Mitochondria-associated ER membrane

Mfn2:

Mitofusin 2

Mito:

Mitochondria

NAD:

Nicotinamide adenine dinucleotide

NADH:

Nicotinamide adenine dinucleotide reduced

NP62:

Nucleoporin 62

OMM:

Outer mitochondria membrane

PERK:

RNA-dependent protein kinase-like ER kinase

P1:

Whole cell/nuclear

P3:

Microsome

RFU:

Relative fluorescence units

RLU:

Relative fluorescence units

Sig-1R:

σ-1 receptor

TCA:

Tricarboxylic acid

Tg:

Thapsigargin

TM:

Transmembrane

Tomm20:

Translocase of the outer mitochondrial membrane

Tun:

Tunicamycin

VDAC:

Voltage-gated anion channel

YFP:

Yellow fluorescent protein.

References

  • Addabbo F et al (2009) The Krebs cycle and mitochondrial mass are early victims of endothelial dysfunction: proteomic approach. Am J Pathol 1:34–43

    Article  Google Scholar 

  • Beis I, Newsholme EA (1976) Effects of calcium ions on adenine nucleotide translocase from cardiac muscle. J Mol Cell Cardiol 11:863–876

    Article  Google Scholar 

  • Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 1:130–134

    Article  Google Scholar 

  • Berridge MJ (2002) The endoplasmic reticulum : a multifunctional signaling organelle, 235–249

  • Berridge MV, Herst PM, Tan AS (2005) Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 05:127–152

    Article  Google Scholar 

  • Betz C, Stracka D, Prescianotto-baschong C, Frieden M, Demaurex N (2013) Associated endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology

  • Blackshaw S, Sawa A, Sharp AH, Ross CA, Snyder SH, Khan AA (2000) Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J 10:1375–1379

    Article  Google Scholar 

  • Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 12:1051–1061

    Article  Google Scholar 

  • Bononi A, Bonora M, Marchi S, Missiroli S, Poletti F, Giorgi C, Pandolfi PP, Pinton P (2013) Identification of PTEN at the ER and MAMs and its regulation of Ca(2+) signaling and apoptosis in a protein phosphatase-dependent manner. Cell Death Differ 12:1631–1643

    Article  Google Scholar 

  • Bravo R et al (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 14:2511

    Article  Google Scholar 

  • Brooks C, Cho S, Wang C, Yang T, Dong Z (2011) Fragmented mitochondria are sensitized to Bax insertion and activation during apoptosis, 447–455

  • Cárdenas C et al (2010) Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2 + transfer to mitochondria. Cell 2:270–283

    Article  Google Scholar 

  • Chen ZX, Pervaiz S (2007) Bcl-2 induces pro-oxidant state by engaging mitochondrial respiration in tumor cells. Cell Death Differ 9:1617–1627

    Article  Google Scholar 

  • Chen ZX, Pervaiz S (2010) Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ 3:408–420

    Article  Google Scholar 

  • Chen R et al (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 2:193–203

    Article  Google Scholar 

  • Chen Y et al (2011) Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. J Cell Biol 2:263–276

    Article  Google Scholar 

  • Chiang GG, Sisk WP (2005) Bcl-x(L) mediates increased production of humanized monoclonal antibodies in Chinese hamster ovary cells. Biotechnol Bioeng 7:779–792

    Article  Google Scholar 

  • Csordás G, Renken C, V’arnai P, Walter L, Weaver D, Buttle KF, Balla T, Mannella CA, Hajn’oczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 7:915–921

    Article  Google Scholar 

  • Das A (2003) Regulation of the mitochondrial ATP-synthase in health and disease. Mol Genet Metab 2:71–82

    Article  Google Scholar 

  • Distelhorst CW, Shore GC (2004) Bcl-2 and calcium: controversy beneath the surface. Oncogene 16:2875–2880

    Article  Google Scholar 

  • Dorai H, Kyung YS, Ellis D, Kinney C, Lin C, Jan D, Moore G, Betenbaugh MJ (2009) Expression of anti-apoptosis genes alters lactate metabolism of Chinese Hamster Ovary cells in culture. Biotechnol Bioeng 3:592–608

    Article  Google Scholar 

  • Duchen MR (2004) Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol Asp Med 4:365–451

    Article  Google Scholar 

  • DuRose JB, Tam AB, Niwa M (2006) Intrinsic capacities of molecular sensors of the unfolded protein response to sense alternate forms of endoplasmic reticulum stress. Mol Biol Cell 7:3095–3107

    Article  Google Scholar 

  • Eckenrode EF, Yang J, Velmurugan GV, Foskett JK, White C (2010) Apoptosis protection by Mcl-1 and Bcl-2 modulation of inositol 1,4,5-trisphosphate receptor-dependent Ca2+ signaling. J Biol Chem 18:13678–13684

    Article  Google Scholar 

  • Eno CO, Eckenrode EF, Olberding KE, Zhao G, White C, Li C (2012) Distinct roles of mitochondria- and ER-localized Bcl-xL in apoptosis resistance and Ca2+ homeostasis. Mol Biol Cell 13:2605–2618

    Article  Google Scholar 

  • Ezawa I, Ogata E (1979) Ca2 + −induced activation of succinate dehydrogenase and the regulation of mitochondrial oxidative reactions. J Biochem 1:65–74

    Google Scholar 

  • Gautier C a, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci U S A 32:11364–11369

    Article  Google Scholar 

  • Giorgi C et al (2010) PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science 6008:1247–1251

    Article  Google Scholar 

  • Görlach A, Klappa P, Kietzmann T (2006) The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control. Antioxid Redox Signal 9–10:1391–1418

    Article  Google Scholar 

  • Gülçe Iz S, Çalimlioglu B, Deliloglu Gürhan SI (2012) Using Bcl-xL anti-apoptotic protein for altering target cell apoptosis. EJB 5

  • Hammerman PS, Fox CJ, Thompson CB (2004) Beginnings of a signal-transduction pathway for bioenergetic control of cell survival. Trends Biochem Sci 11:586–592

    Article  Google Scholar 

  • Hayashi T, Su T (2007) Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2+) signaling and cell survival. Cell 3:596–610

    Article  Google Scholar 

  • Hayashi T, Su T, Rizzuto R, Hajnoczky G (2009) MAM: more than just a housekeeper. Trends Cell Biol 2:81–88

    Article  Google Scholar 

  • Hinz JM, Helleday T, Meuth M (2003) Reduced apoptotic response to camptothecin in CHO cells deficient in XRCC3. Carcinogenesis 2:249–253

    Article  Google Scholar 

  • Hoseki J, Ushioda R, Nagata K (2010) Mechanism and components of endoplasmic reticulum- associated degradation. J Biochem 1:19–25

    Article  Google Scholar 

  • Huang H, Hu X, Eno CO, Zhao G, Li C, White C (2013) An interaction between Bcl-xL and the Voltage-dependent Anion Channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 27:19870–19881

    Article  Google Scholar 

  • Hubbard MJ, McHugh NJ (1996) Mitochondrial ATP synthase F1-beta-subunit is a calcium- binding protein. FEBS Lett 3:323–329

    Article  Google Scholar 

  • Jahani-Asl A, Cheung ECC, Neuspiel M, MacLaurin JG, Fortin A, Park DS, McBride HM, Slack RS (2007) Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem 33:23788–23798

    Article  Google Scholar 

  • Jeon MK, Yu DY, Lee GM (2011) Combinatorial engineering of ldh-a and bcl-2 for reducing lactate production and improving cell growth in dihydrofolate reductase-deficient Chinese hamster ovary cells. Appl Microbiol Biotechnol 4:779–790

    Article  Google Scholar 

  • Jouaville LS, Pinton P, Bastianutto C, Rutter G a, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci U S A 24:13807–13812

    Article  Google Scholar 

  • Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C (2003) Characterization of the signal that directs Bcl-xL, but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 1:53

    Article  Google Scholar 

  • Kirichenko A, Vygodina T, Mkrtchyan HM, Konstantinov A (1998) Specific cation binding site in mammalian cytochrome oxidase. FEBS Lett 3:329–333

    Article  Google Scholar 

  • Largent BL, Gundlach AL, Snyder SH (1984) Psychotomimetic opiate receptors labeled and visualized with(+)-[3H]3-(3-hydroxyphenyl)-N-(1-propyl)piperidine. Proc Natl Acad Sci U S A 15:4983–4987

    Article  Google Scholar 

  • Lewis A, Hayashi T, Su TP, Betenbaugh MJ (2014) Bcl-2 family in inter-organelle modulation of calcium signaling; roles in bioenergetics and cell survival. J Bioenerg Biomembr 1:1–15

    Article  Google Scholar 

  • Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB (2002) Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 15:9830–9835

    Article  Google Scholar 

  • Li C, Wang X, Vais H, Thompson CB, Foskett JK, White C (2007) Apoptosis regulation by Bcl-x(L) modulation of mammalian inositol 1,4,5-trisphosphate receptor channel isoform gating. Proc Natl Acad Sci U S A 30:12565–12570

    Article  Google Scholar 

  • Lu H, Burns D, Garnier P, Wei G, Zhu K, Ying W (2007) P2X7 receptors mediate NADH transport across the plasma membranes of astrocytes. Biochem Biophys Res Commun 4:946–950

    Article  Google Scholar 

  • Marchi S, Marinello M, Bononi A, Bonora M, Giorgi C, Rimessi A, Pinton P (2012) Selective modulation of subtype III IP(3)R by Akt regulates ER Ca(2)(+) release and apoptosis. Cell Death Dis e304

  • Mendes CCP, Gomes DA, Thompson M, Souto NC, Goes TS, Goes AM, Rodrigues MA, Gomez MV, Nathanson MH, Leite MF (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 49:40892–40900

    Article  Google Scholar 

  • Meunier J, Hayashi T (2010) Sigma-1 receptors regulate Bcl-2 expression by reactive oxygen species-dependent transcriptional regulation of nuclear factor kappaB. J Pharmacol Exp Ther 2:388–397

    Article  Google Scholar 

  • Michel AD, Chessell IP, Hibell AD, Simon J, Humphrey PPA (1998) Identi ® cation and characterization of an endogenous P2X 7 (P2Z) receptor in CHO-K1 cells, 1194–1201

  • Monaco G et al (2012) Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ 2:295–309

    Article  Google Scholar 

  • Monserrate J, Chen M, Brachmann C (2012) Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism. BMC Biol 1

  • Mori T, Hayashi T, Hayashi E, Su T (2013) Sigma-1 receptor chaperone at the ER- mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One 10, e76941

    Article  Google Scholar 

  • Ngoh GA, Papanicolaou KN, Walsh K (2012) Loss of mitofusin 2 promotes endoplasmic reticulum stress. J Biol Chem 24:20321–20332

    Article  Google Scholar 

  • Oakes S a, Scorrano L, Opferman JT, Bassik MC, Nishino M, Pozzan T, Korsmeyer SJ (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci U S A 1:105–110

    Article  Google Scholar 

  • Palmer AE, Tsien RY (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    Article  CAS  Google Scholar 

  • Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 50:17404–17409

    Article  Google Scholar 

  • Pan Z, Damron D, Nieminen AL, Bhat MB, Ma J (2000) Depletion of intracellular Ca2+ by caffeine and ryanodine induces apoptosis of chinese hamster ovary cells transfected with ryanodine receptor. J Biol Chem 26:19978–19984

    Article  Google Scholar 

  • Pinton P, Ferrari D, Rapizzi E, Francesco DV, Pozzan T, Rizzuto R (2002) A role for calcium in Bcl-2 action? Biochimie 2–3:195–201

    Article  Google Scholar 

  • Rizzuto R, Diego DS, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 9:566–578

    Article  Google Scholar 

  • Rong Y et al (2008) Targeting Bcl-2-IP3 receptor interaction to reverse Bcl-2′s inhibition of apoptotic calcium signals. Mol Cell 2:255–265

    Article  Google Scholar 

  • Rong Y, Humbert DS, Bultynck G, Aromolaran AS, Zhong F, Parys JB, Mignery GA, Roderick HL, Bootman MD, Distelhorst CW (2009) The BH4 domain of Bcl-2 inhibits ER calcium release and apoptosis by binding the regulatory and coupling domain of the IP3 receptor. Proc Natl Acad Sci U S A 34:14397–14402

    Article  Google Scholar 

  • Russell JB, Forsberg N (1986) Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism. Br J Nutr 1:153–162

    Article  Google Scholar 

  • Scacheri PC et al (2004) Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci U S A 7:1892–1897

    Article  Google Scholar 

  • Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science (New York, NY) 5616:135–139

    Article  Google Scholar 

  • Snyder SH, Largent BL (1989) Receptor mechanisms in antipsychotic drug action: focus on sigma receptors. J Neuropsychiatry Clin Neurosci 1:7–15

    Article  CAS  Google Scholar 

  • Su T (1982) Evidence for sigma-opioid receptor: binding of [3H]SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 2:284–290

    Google Scholar 

  • Su Q, Wang S, Gao HQ, Kazemi S, Harding HP, Ron D, Koromilas AE (2008) Modulation of the eukaryotic initiation factor 2 alpha-subunit kinase PERK by tyrosine phosphorylation. J Biol Chem 1:469–475

    Article  Google Scholar 

  • Szabadkai G, Bianchi K, V’arnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol 6:901–911

    Article  Google Scholar 

  • Tagami S, Eguchi Y, Kinoshita M, Takeda M, Tsujimoto Y (2000) A novel protein, RTN-XS, interacts with both Bcl-XL and Bcl-2 on endoplasmic reticulum and reduces their anti-apoptotic activity. Oncogene 50:5736–5746

    Article  Google Scholar 

  • Templeton N, Lewis A, Dorai H, Qian EA, Campbell MP, Smith KD, Betenbaugh MJ, Young JD (2014) The impact of anti-apoptotic gene Bcl-2∆ expression on CHO central metabolism. Metab Eng 25:92–102

    Article  CAS  Google Scholar 

  • Upton J, Austgen K, Nishino M, Coakley KM, Hagen A, Han D, Papa FR, Oakes SA (2008) Caspase-2 cleavage of BID is a critical apoptotic signal downstream of endoplasmic reticulum stress. Mol Cell Biol 12:3943–3951

    Article  Google Scholar 

  • Vance JE (1990) Phospholipid synthesis in a membrane fraction associated with mitochondria. J Biol Chem 13:7248–7256

    Google Scholar 

  • Wan B, LaNoue KF, Cheung JY, Scaduto RC (1989) Regulation of citric acid cycle by calcium. J Biol Chem 23:13430–13439

    Google Scholar 

  • White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-XL modulation of the InsP3R. Nat Cell Biol 10:1021–1028

    Article  Google Scholar 

  • Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy. Biophys J 4:2395–2402

    Article  Google Scholar 

  • Zannetti A et al (2008) Gefitinib induction of in vivo detectable signals by Bcl-2/Bcl-xL modulation of inositol trisphosphate receptor type 3. Clin Cancer Res 16:5209–5219

    Article  Google Scholar 

  • Zhang G, Yan G, Gurtu V, Spencer C, Kain SR (1998) Caspase inhibition prevents staurosporine-induced apoptosis in CHO-K1 cells. Apoptosis 1:27–33

    Article  Google Scholar 

  • Zheng J, Tsai Y, Kadimcherla P, Zhang R, Shi J, Oyler G a, Boustany NN (2008) The C- terminal transmembrane domain of Bcl-xL mediates changes in mitochondrial morphology. Biophys J 1:286–297

    Article  Google Scholar 

  • Zinchuk V, Grossenbacher-Zinchuk O (2001) Quantitative colocalization analysis of fluorescence microscopy images. In: Anonymous (ed) Current protocols in cell biology. Wiley

Download references

Acknowledgments

The authors would like to thank R.Y. Tsien (University of California, San Diego, CA) for generously providing D1ER Ca2+ cameleon. We additionally thank J.M. Hardwick (Johns Hopkins University, Baltimore, MD) for providing Bcl-xL ΔBH4 and Bcl-xL ΔTM constructs, and Biolog, Inc. for providing the use of its Omnilog microarray system. This work is supported by the NSF and the Intramural Research Program, National Institute of Drug Abuse, NIH, DHHS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael J. Betenbaugh or Tsung-Ping Su.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

(PDF 211 kb)

Figure S2

(PDF 92 kb)

Figure S3

(PDF 177 kb)

Figure S4

(PDF 819 kb)

Figure S5

(PDF 72 kb)

Figure S6

(PDF 591 kb)

Figure S7

(PDF 770 kb)

Figure S8

(PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williams, A., Hayashi, T., Wolozny, D. et al. The non-apoptotic action of Bcl-xL: regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J Bioenerg Biomembr 48, 211–225 (2016). https://doi.org/10.1007/s10863-016-9664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9664-x

Keywords

Navigation