Skip to main content

Advertisement

Log in

Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Cardiolipin (CL), the signature phospholipid of mitochondria, is involved in a plethora of cellular processes and is crucial for mitochondrial function and architecture. The de novo synthesis of CL in the mitochondria is followed by a unique remodeling process, in which CL undergoes cycles of deacylation and reacylation. Specific fatty acyl composition is acquired during this process, and remodeled CL contains predominantly unsaturated fatty acids. The importance of CL remodeling is underscored by the life-threatening genetic disorder Barth syndrome (BTHS), caused by mutations in tafazzin, which reacylates monolysocardiolipin (MLCL) generated from the deacylation of CL. Just as CL-deficient yeast mutants have been instrumental in elucidating functions of this lipid, the recently characterized CL-phospholipase mutant cld1Δ and the tafazzin mutant taz1Δ are powerful tools to understand the functions of CL remodeling. In this review, we discuss recent advances in understanding the role of CL in mitochondria with specific focus on the enigmatic functions of CL remodeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acehan D, Xu Y, Stokes DL, Schlame M (2007) Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. Lab Investig 87(1):40–48. doi:10.1038/labinvest.3700480

    Article  CAS  Google Scholar 

  • Acehan D, Khuchua Z, Houtkooper RH, Malhotra A, Kaufman J, Vaz FM et al (2009) Distinct effects of tafazzin deletion in differentiated and undifferentiated mitochondria. Mitochondrion 9(2):86–95. doi:10.1016/j.mito.2008.12.001

    Article  CAS  Google Scholar 

  • Acehan D, Vaz F, Houtkooper RH, James J, Moore V, Tokunaga C et al (2011) Cardiac and skeletal muscle defects in a mouse model of human Barth syndrome. J Biol Chem 286(2):899–908. doi:10.1074/jbc.M110.171439

    Article  CAS  Google Scholar 

  • Baile MG, Whited K, Claypool SM (2013) Deacylation on the matrix side of the mitochondrial inner membrane regulates cardiolipin remodeling. Mol Biol Cell 24(12):2008–2020. doi:10.1091/mbc.E13-03-0121

    Article  CAS  Google Scholar 

  • Baile MG, Sathappa M, Lu YW, Pryce E, Whited K, McCaffery JM et al (2014) Unremodeled and remodeled cardiolipin are functionally indistinguishable in yeast. J Biol Chem 289(3):1768–1778. doi:10.1074/jbc.M113.525733

    Article  CAS  Google Scholar 

  • Barth PG, Scholte HR, Berden JA, Van der Klei-Van Moorsel JM, Luyt-Houwen IE, Van’t Veer-Korthof ET et al (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62(1–3):327–355

    Article  CAS  Google Scholar 

  • Barth PG, Wanders RJ, Vreken P, Janssen EA, Lam J, Baas F (1999) X-linked cardioskeletal myopathy and neutropenia (Barth syndrome) (MIM 302060). J Inherit Metab Dis 22(4):555–567

    Article  CAS  Google Scholar 

  • Bayir H, Fadeel B, Palladino MJ, Witasp E, Kurnikov IV, Tyurina YY et al (2006) Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim Biophys Acta 1757(5–6):648–659. doi:10.1016/j.bbabio.2006.03.002

    Article  CAS  Google Scholar 

  • Belikova NA, Vladimirov YA, Osipov AN, Kapralov AA, Tyurin VA, Potapovich MV et al (2006) Peroxidase activity and structural transitions of cytochrome c bound to cardiolipin-containing membranes. Biochemistry 45(15):4998–5009. doi:10.1021/bi0525573

    Article  CAS  Google Scholar 

  • Belikova NA, Jiang J, Tyurina YY, Zhao Q, Epperly MW, Greenberger J et al (2007) Cardiolipin-specific peroxidase reactions of cytochrome C in mitochondria during irradiation-induced apoptosis. Int J Radiat Oncol Biol Phys 69(1):176–186. doi:10.1016/j.ijrobp.2007.03.043

    Article  CAS  Google Scholar 

  • Beranek A, Rechberger G, Knauer H, Wolinski H, Kohlwein SD, Leber R (2009) Identification of a cardiolipin-specific phospholipase encoded by the gene CLD1 (YGR110W) in yeast. J Biol Chem 284(17):11572–11578. doi:10.1074/jbc.M805511200

    Article  CAS  Google Scholar 

  • Beyer K, Klingenberg M (1985) ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24(15):3821–3826

    Article  CAS  Google Scholar 

  • Bione S, D’Adamo P, Maestrini E, Gedeon AK, Bolhuis PA, Toniolo D (1996) A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 12(4):385–389. doi:10.1038/ng0496-385

    Article  CAS  Google Scholar 

  • Buckland AG, Kinkaid AR, Wilton DC (1998) Cardiolipin hydrolysis by human phospholipases A2. The multiple enzymatic activities of human cytosolic phospholipase A2. Biochim Biophys Acta 1390(1):65–72

    Article  CAS  Google Scholar 

  • Cao J, Liu Y, Lockwood J, Burn P, Shi Y (2004) A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J Biol Chem 279(30):31727–31734. doi:10.1074/jbc.M402930200

    Article  CAS  Google Scholar 

  • Cao J, Shen W, Chang Z, Shi Y (2009) ALCAT1 is a polyglycerophospholipid acyltransferase potently regulated by adenine nucleotide and thyroid status. Am J Physiol Endocrinol Metab 296(4):E647–653. doi:10.1152/ajpendo.90761.2008

    Article  CAS  Google Scholar 

  • Chang SC, Heacock PN, Clancey CJ, Dowhan W (1998a) The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J Biol Chem 273(16):9829–9836

    Article  CAS  Google Scholar 

  • Chang SC, Heacock PN, Mileykovskaya E, Voelker DR, Dowhan W (1998b) Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J Biol Chem 273(24):14933–14941

    Article  CAS  Google Scholar 

  • Christodoulou J, McInnes RR, Jay V, Wilson G, Becker LE, Lehotay DC et al (1994) Barth syndrome: clinical observations and genetic linkage studies. Am J Med Genet 50(3):255–264. doi:10.1002/ajmg.1320500309

    Article  CAS  Google Scholar 

  • Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY, Kapralov AA et al (2013) Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat Cell Biol 15(10):1197–1205. doi:10.1038/ncb2837

    Article  CAS  Google Scholar 

  • Clarke SL, Bowron A, Gonzalez IL, Groves SJ, Newbury-Ecob R, Clayton N et al (2013) Barth syndrome. Orphanet J Rare Dis 8:23. doi:10.1186/1750-1172-8-23

    Article  Google Scholar 

  • Claypool SM (2009) Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. Biochim Biophys Acta 1788(10):2059–2068. doi:10.1016/j.bbamem.2009.04.020

    Article  CAS  Google Scholar 

  • Claypool SM, McCaffery JM, Koehler CM (2006) Mitochondrial mislocalization and altered assembly of a cluster of Barth syndrome mutant tafazzins. J Cell Biol 174(3):379–390. doi:10.1083/jcb.200605043

    Article  CAS  Google Scholar 

  • Claypool SM, Oktay Y, Boontheung P, Loo JA, Koehler CM (2008a) Cardiolipin defines the interactome of the major ADP/ATP carrier protein of the mitochondrial inner membrane. J Cell Biol 182(5):937–950. doi:10.1083/jcb.200801152

    Article  CAS  Google Scholar 

  • Claypool SM, Boontheung P, McCaffery JM, Loo JA, Koehler CM (2008b) The cardiolipin transacylase, tafazzin, associates with two distinct respiratory components providing insight into Barth syndrome. Mol Biol Cell 19(12):5143–5155. doi:10.1091/mbc.E08-09-0896

    Article  CAS  Google Scholar 

  • Cullis PR, Hope MJ, Tilcock CP (1986) Lipid polymorphism and the roles of lipids in membranes. Chem Phys Lipids 40(2–4):127–144

    Article  CAS  Google Scholar 

  • Daum G (1985) Lipids of mitochondria. Biochim Biophys Acta 822(1):1–42

    Article  CAS  Google Scholar 

  • Davey KM, Parboosingh JS, McLeod DR, Chan A, Casey R, Ferreira P et al (2006) Mutation of DNAJC19, a human homologue of yeast inner mitochondrial membrane co-chaperones, causes DCMA syndrome, a novel autosomal recessive Barth syndrome-like condition. J Med Genet 43(5):385–393. doi:10.1136/jmg.2005.036657

    Article  CAS  Google Scholar 

  • de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325(1):108–116

    Article  Google Scholar 

  • Dennis EA, Cao J, Hsu YH, Magrioti V, Kokotos G (2011) Phospholipase A2 enzymes: physical structure, biological function, disease implication, chemical inhibition, and therapeutic intervention. Chem Rev 111(10):6130–6185. doi:10.1021/cr200085w

    Article  CAS  Google Scholar 

  • Dzugasova V, Obernauerova M, Horvathova K, Vachova M, Zakova M, Subik J (1998) Phosphatidylglycerolphosphate synthase encoded by the PEL1/PGS1 gene in Saccharomyces cerevisiae is localized in mitochondria and its expression is regulated by phospholipid precursors. Curr Genet 34(4):297–302

    Article  CAS  Google Scholar 

  • Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265(32):19434–19440

    CAS  Google Scholar 

  • Gadd ME, Broekemeier KM, Crouser ED, Kumar J, Graff G, Pfeiffer DR (2006) Mitochondrial iPLA2 activity modulates the release of cytochrome c from mitochondria and influences the permeability transition. J Biol Chem 281(11):6931–6939. doi:10.1074/jbc.M510845200

    Article  CAS  Google Scholar 

  • Gawrisch K (2012) Tafazzin senses curvature. Nat Chem Biol 8(10):811–812. doi:10.1038/nchembio.1068

    Article  CAS  Google Scholar 

  • Gebert N, Joshi AS, Kutik S, Becker T, McKenzie M, Guan XL et al (2009) Mitochondrial cardiolipin involved in outer-membrane protein biogenesis: implications for Barth syndrome. Curr Biol 19(24):2133–2139. doi:10.1016/j.cub.2009.10.074

    Article  CAS  Google Scholar 

  • Genova ML, Baracca A, Biondi A, Casalena G, Faccioli M, Falasca AI et al (2008) Is supercomplex organization of the respiratory chain required for optimal electron transfer activity? Biochim Biophys Acta 1777(7–8):740–746. doi:10.1016/j.bbabio.2008.04.007

    Article  CAS  Google Scholar 

  • Gohil VM, Greenberg ML (2009) Mitochondrial membrane biogenesis: phospholipids and proteins go hand in hand. J Cell Biol 184(4):469–472. doi:10.1083/jcb.200901127

    Article  CAS  Google Scholar 

  • Gohil VM, Hayes P, Matsuyama S, Schagger H, Schlame M, Greenberg ML (2004) Cardiolipin biosynthesis and mitochondrial respiratory chain function are interdependent. J Biol Chem 279(41):42612–42618. doi:10.1074/jbc.M402545200

    Article  CAS  Google Scholar 

  • Gu Z, Valianpour F, Chen S, Vaz FM, Hakkaart GA, Wanders RJ et al (2004) Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol Microbiol 51(1):149–158

    Article  CAS  Google Scholar 

  • Han X, Yang J, Cheng H, Yang K, Abendschein DR, Gross RW (2005) Shotgun lipidomics identifies cardiolipin depletion in diabetic myocardium linking altered substrate utilization with mitochondrial dysfunction. Biochemistry 44(50):16684–16694. doi:10.1021/bi051908a

    Article  CAS  Google Scholar 

  • Han X, Yang J, Yang K, Zhao Z, Abendschein DR, Gross RW (2007) Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: a shotgun lipidomics study. Biochemistry 46(21):6417–6428. doi:10.1021/bi7004015

    Article  CAS  Google Scholar 

  • Harner ME, Unger AK, Izawa T, Walther DM, Ozbalci C, Geimer S et al (2014) Aim24 and MICOS modulate respiratory function, tafazzin-related cardiolipin modification and mitochondrial architecture. Elife (Cambridge) 3:e01684. doi:10.7554/eLife.01684

    Google Scholar 

  • He Q, Han X (2014) Cardiolipin remodeling in diabetic heart. Chem Phys Lipids 179:75–81. doi:10.1016/j.chemphyslip.2013.10.007

    Article  CAS  Google Scholar 

  • Hirschberg CB, Kennedy EP (1972) Mechanism of the enzymatic synthesis of cardiolipin in Escherichia coli. Proc Natl Acad Sci U S A 69(3):648–651

    Article  CAS  Google Scholar 

  • Hostetler KY, van den Bosch H, van Deenen LL (1972) The mechanism of cardiolipin biosynthesis in liver mitochondria. Biochim Biophys Acta 260(3):507–513

    Article  CAS  Google Scholar 

  • Houtkooper RH, Vaz FM (2008) Cardiolipin, the heart of mitochondrial metabolism. Cell Mol Life Sci 65(16):2493–2506. doi:10.1007/s00018-008-8030-5

    Article  CAS  Google Scholar 

  • Houtkooper RH, Turkenburg M, Poll-The BT, Karall D, Perez-Cerda C, Morrone A et al (2009a) The enigmatic role of tafazzin in cardiolipin metabolism. Biochim Biophys Acta 1788(10):2003–2014. doi:10.1016/j.bbamem.2009.07.009

    Article  CAS  Google Scholar 

  • Houtkooper RH, Rodenburg RJ, Thiels C, van Lenthe H, Stet F, Poll-The BT et al (2009b) Cardiolipin and monolysocardiolipin analysis in fibroblasts, lymphocytes, and tissues using high-performance liquid chromatography-mass spectrometry as a diagnostic test for Barth syndrome. Anal Biochem 387(2):230–237. doi:10.1016/j.ab.2009.01.032

    Article  CAS  Google Scholar 

  • Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021(2):217–226

    Article  CAS  Google Scholar 

  • Hsu YH, Dumlao DS, Cao J, Dennis EA (2013) Assessing phospholipase A2 activity toward cardiolipin by mass spectrometry. PLoS ONE 8(3):e59267. doi:10.1371/journal.pone.0059267

    Article  CAS  Google Scholar 

  • Iverson SL, Enoksson M, Gogvadze V, Ott M, Orrenius S (2004) Cardiolipin is not required for Bax-mediated cytochrome c release from yeast mitochondria. J Biol Chem 279(2):1100–1107. doi:10.1074/jbc.M305020200

    Article  CAS  Google Scholar 

  • Jiang F, Rizavi HS, Greenberg ML (1997) Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or non-fermentable carbon sources. Mol Microbiol 26(3):481–491

    Article  CAS  Google Scholar 

  • Jiang F, Ryan MT, Schlame M, Zhao M, Gu Z, Klingenberg M et al (2000) Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 275(29):22387–22394. doi:10.1074/jbc.M909868199

    Article  CAS  Google Scholar 

  • Joshi AS, Zhou J, Gohil VM, Chen S, Greenberg ML (2009) Cellular functions of cardiolipin in yeast. Biochim Biophys Acta 1793(1):212–218. doi:10.1016/j.bbamcr.2008.07.024

    Article  CAS  Google Scholar 

  • Joshi AS, Thompson MN, Fei N, Huttemann M, Greenberg ML (2012) Cardiolipin and mitochondrial phosphatidylethanolamine have overlapping functions in mitochondrial fusion in Saccharomyces cerevisiae. J Biol Chem 287(21):17589–17597. doi:10.1074/jbc.M111.330167

    Article  CAS  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1(4):223–232. doi:10.1038/nchembio727

    Article  CAS  Google Scholar 

  • Kagan VE, Bayir HA, Belikova NA, Kapralov O, Tyurina YY, Tyurin VA et al (2009) Cytochrome c/cardiolipin relations in mitochondria: a kiss of death. Free Radic Biol Med 46(11):1439–1453. doi:10.1016/j.freeradbiomed.2009.03.004

    Article  CAS  Google Scholar 

  • Kalanxhi E, Wallace CJ (2007) Cytochrome c impaled: investigation of the extended lipid anchorage of a soluble protein to mitochondrial membrane models. Biochem J 407(2):179–187. doi:10.1042/BJ20070459

    Article  CAS  Google Scholar 

  • Kelly BL, Greenberg ML (1990) Characterization and regulation of phosphatidylglycerolphosphate phosphatase in Saccharomyces cerevisiae. Biochim Biophys Acta 1046(2):144–150

    Article  CAS  Google Scholar 

  • Kiebish MA, Yang K, Liu X, Mancuso DJ, Guan S, Zhao Z et al (2013) Dysfunctional cardiac mitochondrial bioenergetic, lipidomic, and signaling in a murine model of Barth syndrome. J Lipid Res 54(5):1312–1325. doi:10.1194/jlr.M034728

    Article  CAS  Google Scholar 

  • Klingenberg M (2009) Cardiolipin and mitochondrial carriers. Biochim Biophys Acta 1788(10):2048–2058. doi:10.1016/j.bbamem.2009.06.007

    Article  CAS  Google Scholar 

  • Kutik S, Rissler M, Guan XL, Guiard B, Shui G, Gebert N et al (2008) The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. J Cell Biol 183(7):1213–1221. doi:10.1083/jcb.200806048

    Article  CAS  Google Scholar 

  • Lands WE (1960) Metabolism of glycerolipids. 2. The enzymatic acylation of lysolecithin. J Biol Chem 235:2233–2237

    CAS  Google Scholar 

  • Lange C, Nett JH, Trumpower BL, Hunte C (2001) Specific roles of protein-phospholipid interactions in the yeast cytochrome bc1 complex structure. EMBO J 20(23):6591–6600. doi:10.1093/emboj/20.23.6591

    Article  CAS  Google Scholar 

  • Lecocq J, Ballou CE (1964) On the structure of cardiolipin. Biochemistry 3:976–980

    Article  CAS  Google Scholar 

  • Lewis RN, McElhaney RN (2009) The physicochemical properties of cardiolipin bilayers and cardiolipin-containing lipid membranes. Biochim Biophys Acta 1788(10):2069–2079. doi:10.1016/j.bbamem.2009.03.014

    Article  CAS  Google Scholar 

  • Li J, Romestaing C, Han X, Li Y, Hao X, Wu Y et al (2010) Cardiolipin remodeling by ALCAT1 links oxidative stress and mitochondrial dysfunction to obesity. Cell Metab 12(2):154–165. doi:10.1016/j.cmet.2010.07.003

    Article  CAS  Google Scholar 

  • Li J, Liu X, Wang H, Zhang W, Chan DC, Shi Y (2012) Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proc Natl Acad Sci U S A 109(18):6975–6980. doi:10.1073/pnas.1120043109

    Article  CAS  Google Scholar 

  • Liu X, Ye B, Miller S, Yuan H, Zhang H, Tian L et al (2012) Ablation of ALCAT1 mitigates hypertrophic cardiomyopathy through effects on oxidative stress and mitophagy. Mol Cell Biol 32(21):4493–4504. doi:10.1128/MCB. 01092-12

    Article  CAS  Google Scholar 

  • Ma BJ, Taylor WA, Dolinsky VW, Hatch GM (1999) Acylation of monolysocardiolipin in rat heart. J Lipid Res 40(10):1837–1845

    CAS  Google Scholar 

  • Ma L, Vaz FM, Gu Z, Wanders RJ, Greenberg ML (2004) The human TAZ gene complements mitochondrial dysfunction in the yeast taz1Delta mutant. Implications for Barth syndrome. J Biol Chem 279(43):44394–44399. doi:10.1074/jbc.M405479200

    Article  CAS  Google Scholar 

  • Malhotra A, Xu Y, Ren M, Schlame M (2009a) Formation of molecular species of mitochondrial cardiolipin. 1. A novel transacylation mechanism to shuttle fatty acids between sn-1 and sn-2 positions of multiple phospholipid species. Biochim Biophys Acta 1791(4):314–320. doi:10.1016/j.bbalip.2009.01.004

    Article  CAS  Google Scholar 

  • Malhotra A, Edelman-Novemsky I, Xu Y, Plesken H, Ma J, Schlame M et al (2009b) Role of calcium-independent phospholipase A2 in the pathogenesis of Barth syndrome. Proc Natl Acad Sci U S A 106(7):2337–2341. doi:10.1073/pnas.0811224106

    Article  CAS  Google Scholar 

  • Mancuso DJ, Sims HF, Han X, Jenkins CM, Guan SP, Yang K et al (2007) Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype. J Biol Chem 282(48):34611–34622. doi:10.1074/jbc.M707795200

    Article  CAS  Google Scholar 

  • Mancuso DJ, Kotzbauer P, Wozniak DF, Sims HF, Jenkins CM, Guan S et al (2009) Genetic ablation of calcium-independent phospholipase A2 {gamma} leads to alterations in hippocampal cardiolipin content and molecular species distribution, mitochondrial degeneration, autophagy, and cognitive dysfunction. J Biol Chem 284(51):35632–35644. doi:10.1074/jbc.M109.055194

    Article  CAS  Google Scholar 

  • McKenzie M, Lazarou M, Thorburn DR, Ryan MT (2006) Mitochondrial respiratory chain supercomplexes are destabilized in Barth Syndrome patients. J Mol Biol 361(3):462–469. doi:10.1016/j.jmb.2006.06.057

    Article  CAS  Google Scholar 

  • Mileykovskaya E, Dowhan W (2014) Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 179:42–48. doi:10.1016/j.chemphyslip.2013.10.012

    Article  CAS  Google Scholar 

  • Neuwald AF (1997) Barth syndrome may be due to an acyltransferase deficiency. Curr Biol 7(8):R465–466

    Article  CAS  Google Scholar 

  • Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351(Pt 1):183–193

    Article  CAS  Google Scholar 

  • Ojala T, Polinati P, Manninen T, Hiippala A, Rajantie J, Karikoski R et al (2012) New mutation of mitochondrial DNAJC19 causing dilated and noncompaction cardiomyopathy, anemia, ataxia, and male genital anomalies. Pediatr Res 72(4):432–437. doi:10.1038/pr.2012.92

    Article  CAS  Google Scholar 

  • Osman C, Haag M, Wieland FT, Brugger B, Langer T (2010) A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J 29(12):1976–1987. doi:10.1038/emboj.2010.98

    Article  CAS  Google Scholar 

  • Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W (2001) Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 276(41):38061–38067. doi:10.1074/jbc.M107067200

    CAS  Google Scholar 

  • Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci U S A 99(3):1259–1263. doi:10.1073/pnas.241655498

    Article  CAS  Google Scholar 

  • Ott M, Zhivotovsky B, Orrenius S (2007) Role of cardiolipin in cytochrome c release from mitochondria. Cell Death Differ 14(7):1243–1247. doi:10.1038/sj.cdd.4402135

    Article  CAS  Google Scholar 

  • Palsdottir H, Lojero CG, Trumpower BL, Hunte C (2003) Structure of the yeast cytochrome bc1 complex with a hydroxyquinone anion Qo site inhibitor bound. J Biol Chem 278(33):31303–31311. doi:10.1074/jbc.M302195200

    Article  CAS  Google Scholar 

  • Pan HJ, Lin Y, Chen YE, Vance DE, Leiter EH (2006) Adverse hepatic and cardiac responses to rosiglitazone in a new mouse model of type 2 diabetes: relation to dysregulated phosphatidylcholine metabolism. Vasc Pharmacol 45(1):65–71. doi:10.1016/j.vph.2005.11.011

    Article  CAS  Google Scholar 

  • Pangborn MC (1947) The composition of cardiolipin. J Biol Chem 168(1):351–361

    CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466(2–3):323–326

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2001) Reactive oxygen species generated by the mitochondrial respiratory chain affect the complex III activity via cardiolipin peroxidation in beef-heart submitochondrial particles. Mitochondrion 1(2):151–159

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286(1):135–141

    Article  CAS  Google Scholar 

  • Paradies G, Petrosillo G, Paradies V, Ruggiero FM (2009) Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease. Cell Calcium 45(6):643–650. doi:10.1016/j.ceca.2009.03.012

    Article  CAS  Google Scholar 

  • Paradies G, Paradies V, De Benedictis V, Ruggiero FM, Petrosillo G (2014) Functional role of cardiolipin in mitochondrial bioenergetics. Biochim Biophys Acta 1837(4):408–417. doi:10.1016/j.bbabio.2013.10.006

    Article  CAS  Google Scholar 

  • Patil VA, Fox JL, Gohil VM, Winge DR, Greenberg ML (2013) Loss of cardiolipin leads to perturbation of mitochondrial and cellular iron homeostasis. J Biol Chem 288(3):1696–1705. doi:10.1074/jbc.M112.428938

    Article  CAS  Google Scholar 

  • Pfeiffer K, Gohil V, Stuart RA, Hunte C, Brandt U, Greenberg ML et al (2003) Cardiolipin stabilizes respiratory chain supercomplexes. J Biol Chem 278(52):52873–52880. doi:10.1074/jbc.M308366200

    Article  CAS  Google Scholar 

  • Raja V, Greenberg ML (2014) The functions of cardiolipin in cellular metabolism-potential modifiers of the Barth syndrome phenotype. Chem Phys Lipids 179:49–56. doi:10.1016/j.chemphyslip.2013.12.009

    Article  CAS  Google Scholar 

  • Ren M, Phoon CK, Schlame M (2014) Metabolism and function of mitochondrial cardiolipin. Prog Lipid Res 55C:1–16. doi:10.1016/j.plipres.2014.04.001

    Article  CAS  Google Scholar 

  • Richter-Dennerlein R, Korwitz A, Haag M, Tatsuta T, Dargazanli S, Baker M et al (2014) DNAJC19, a Mitochondrial Cochaperone Associated with Cardiomyopathy, Forms a Complex with Prohibitins to Regulate Cardiolipin Remodeling. Cell Metab 20(1):158–171. doi:10.1016/j.cmet.2014.04.016

    Article  CAS  Google Scholar 

  • Samhan-Arias AK, Ji J, Demidova OM, Sparvero LJ, Feng W, Tyurin V et al (2012) Oxidized phospholipids as biomarkers of tissue and cell damage with a focus on cardiolipin. Biochim Biophys Acta 1818(10):2413–2423. doi:10.1016/j.bbamem.2012.03.014

    Article  CAS  Google Scholar 

  • Schlame M, Ren M (2009) The role of cardiolipin in the structural organization of mitochondrial membranes. Biochim Biophys Acta 1788(10):2080–2083. doi:10.1016/j.bbamem.2009.04.019

    Article  CAS  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39(3):257–288

    Article  CAS  Google Scholar 

  • Schlame M, Towbin JA, Heerdt PM, Jehle R, DiMauro S, Blanck TJ (2002) Deficiency of tetralinoleoyl-cardiolipin in Barth syndrome. Ann Neurol 51(5):634–637. doi:10.1002/ana.10176

    Article  CAS  Google Scholar 

  • Schlame M, Kelley RI, Feigenbaum A, Towbin JA, Heerdt PM, Schieble T et al (2003) Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 42(11):1994–1999

    Article  CAS  Google Scholar 

  • Schlame M, Ren M, Xu Y, Greenberg ML, Haller I (2005) Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 138(1–2):38–49. doi:10.1016/j.chemphyslip.2005.08.002

    Article  CAS  Google Scholar 

  • Schlame M, Acehan D, Berno B, Xu Y, Valvo S, Ren M et al (2012) The physical state of lipid substrates provides transacylation specificity for tafazzin. Nat Chem Biol 8(10):862–869. doi:10.1038/nchembio.1064

    Article  CAS  Google Scholar 

  • Schug ZT, Gottlieb E (2009) Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. Biochim Biophys Acta 1788(10):2022–2031. doi:10.1016/j.bbamem.2009.05.004

    Article  CAS  Google Scholar 

  • Seleznev K, Zhao C, Zhang XH, Song K, Ma ZA (2006) Calcium-independent phospholipase A2 localizes in and protects mitochondria during apoptotic induction by staurosporine. J Biol Chem 281(31):22275–22288. doi:10.1074/jbc.M604330200

    Article  CAS  Google Scholar 

  • Shinzawa-Itoh K, Aoyama H, Muramoto K, Terada H, Kurauchi T, Tadehara Y et al (2007) Structures and physiological roles of 13 integral lipids of bovine heart cytochrome c oxidase. EMBO J 26(6):1713–1725. doi:10.1038/sj.emboj.7601618

    Article  CAS  Google Scholar 

  • Sinibaldi F, Fiorucci L, Patriarca A, Lauceri R, Ferri T, Coletta M et al (2008) Insights into cytochrome c-cardiolipin interaction. Role played by ionic strength. Biochemistry 47(26):6928–6935. doi:10.1021/bi800048v

    Article  CAS  Google Scholar 

  • Soustek MS, Falk DJ, Mah CS, Toth MJ, Schlame M, Lewin AS et al (2011) Characterization of a transgenic short hairpin RNA-induced murine model of Tafazzin deficiency. Hum Gene Ther 22(7):865–871. doi:10.1089/hum.2010.199

    Article  CAS  Google Scholar 

  • Tamai KT, Greenberg ML (1990) Biochemical characterization and regulation of cardiolipin synthase in Saccharomyces cerevisiae. Biochim Biophys Acta 1046(2):214–222

    Article  CAS  Google Scholar 

  • Tamura Y, Harada Y, Nishikawa S, Yamano K, Kamiya M, Shiota T et al (2013) Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 17(5):709–718. doi:10.1016/j.cmet.2013.03.018

    Article  CAS  Google Scholar 

  • Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 109(41):16504–16509. doi:10.1073/pnas.1212797109

    Article  CAS  Google Scholar 

  • Taylor WA, Hatch GM (2003) Purification and characterization of monolysocardiolipin acyltransferase from pig liver mitochondria. J Biol Chem 278(15):12716–12721. doi:10.1074/jbc.M210329200

    Article  CAS  Google Scholar 

  • Taylor WA, Hatch GM (2009) Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1). J Biol Chem 284(44):30360–30371. doi:10.1074/jbc.M109.048322

    Article  CAS  Google Scholar 

  • Testet E, Laroche-Traineau J, Noubhani A, Coulon D, Bunoust O, Camougrand N et al (2005) Ypr140wp, ‘the yeast tafazzin’, displays a mitochondrial lysophosphatidylcholine (lyso-PC) acyltransferase activity related to triacylglycerol and mitochondrial lipid synthesis. Biochem J 387(Pt 3):617–626. doi:10.1042/BJ20041491

    Article  CAS  Google Scholar 

  • Tian HF, Feng JM, Wen JF (2012) The evolution of cardiolipin biosynthesis and maturation pathways and its implications for the evolution of eukaryotes. BMC Evol Biol 12:32. doi:10.1186/1471-2148-12-32

    Article  CAS  Google Scholar 

  • Tuller G, Hrastnik C, Achleitner G, Schiefthaler U, Klein F, Daum G (1998) YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett 421(1):15–18

    Article  CAS  Google Scholar 

  • Tyurina YY, Kini V, Tyurin VA, Vlasova II, Jiang J, Kapralov AA et al (2006) Mechanisms of cardiolipin oxidation by cytochrome c: relevance to pro- and antiapoptotic functions of etoposide. Mol Pharmacol 70(2):706–717. doi:10.1124/mol.106.022731

    Article  CAS  Google Scholar 

  • Valianpour F, Wanders RJ, Barth PG, Overmars H, van Gennip AH (2002) Quantitative and compositional study of cardiolipin in platelets by electrospray ionization mass spectrometry: application for the identification of Barth syndrome patients. Clin Chem 48(9):1390–1397

    CAS  Google Scholar 

  • Vreken P, Valianpour F, Nijtmans LG, Grivell LA, Plecko B, Wanders RJ et al (2000) Defective remodeling of cardiolipin and phosphatidylglycerol in Barth syndrome. Biochem Biophys Res Commun 279(2):378–382. doi:10.1006/bbrc.2000.3952

    Article  CAS  Google Scholar 

  • Watkins SM, Reifsnyder PR, Pan HJ, German JB, Leiter EH (2002) Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J Lipid Res 43(11):1809–1817

    Article  CAS  Google Scholar 

  • Xiao J, Engel JL, Zhang J, Chen MJ, Manning G, Dixon JE (2011) Structural and functional analysis of PTPMT1, a phosphatase required for cardiolipin synthesis. Proc Natl Acad Sci U S A 108(29):11860–11865. doi:10.1073/pnas.1109290108

    Article  CAS  Google Scholar 

  • Xu Y, Kelley RI, Blanck TJ, Schlame M (2003) Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 278(51):51380–51385. doi:10.1074/jbc.M307382200

    Article  CAS  Google Scholar 

  • Xu Y, Sutachan JJ, Plesken H, Kelley RI, Schlame M (2005) Characterization of lymphoblast mitochondria from patients with Barth syndrome. Lab Investig 85(6):823–830. doi:10.1038/labinvest.3700274

    Article  CAS  Google Scholar 

  • Xu Y, Condell M, Plesken H, Edelman-Novemsky I, Ma J, Ren M et al (2006) A Drosophila model of Barth syndrome. Proc Natl Acad Sci U S A 103(31):11584–11588. doi:10.1073/pnas.0603242103

    Article  CAS  Google Scholar 

  • Xu Y, Zhang S, Malhotra A, Edelman-Novemsky I, Ma J, Kruppa A et al (2009) Characterization of tafazzin splice variants from humans and fruit flies. J Biol Chem 284(42):29230–29239. doi:10.1074/jbc.M109.016642

    Article  CAS  Google Scholar 

  • Xu FY, McBride H, Acehan D, Vaz FM, Houtkooper RH, Lee RM et al (2010) The dynamics of cardiolipin synthesis post-mitochondrial fusion. Biochim Biophys Acta 1798(8):1577–1585. doi:10.1016/j.bbamem.2010.04.007

    Article  CAS  Google Scholar 

  • Yamashita A, Sugiura T, Waku K (1997) Acyltransferases and transacylases involved in fatty acid remodeling of phospholipids and metabolism of bioactive lipids in mammalian cells. J Biochem 122(1):1–16

    Article  CAS  Google Scholar 

  • Ye C, Lou W, Li Y, Chatzispyrou IA, Huttemann M, Lee I et al (2014) Deletion of the cardiolipin-specific phospholipase Cld1 rescues growth and life span defects in the tafazzin mutant: implications for Barth syndrome. J Biol Chem 289(6):3114–3125. doi:10.1074/jbc.M113.529487

    Article  CAS  Google Scholar 

  • Zhang M, Mileykovskaya E, Dowhan W (2002) Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J Biol Chem 277(46):43553–43556. doi:10.1074/jbc.C200551200

    Article  CAS  Google Scholar 

  • Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA et al (2011) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13(6):690–700. doi:10.1016/j.cmet.2011.04.007

    Article  CAS  Google Scholar 

  • Zinser E, Sperka-Gottlieb CD, Fasch EV, Kohlwein SD, Paltauf F, Daum G (1991) Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. J Bacteriol 173(6):2026–2034

    CAS  Google Scholar 

Download references

Acknowledgments

The Greenberg laboratory acknowledges support from the Barth Syndrome Foundation, Barth Syndrome Foundation of Canada, Association Barth France, and the National Institutes of Health (HL117880).

Conflict of interest

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miriam L. Greenberg.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, C., Shen, Z. & Greenberg, M.L. Cardiolipin remodeling: a regulatory hub for modulating cardiolipin metabolism and function. J Bioenerg Biomembr 48, 113–123 (2016). https://doi.org/10.1007/s10863-014-9591-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-014-9591-7

Key words

Navigation