Skip to main content
Log in

Multi-receiver solid-state NMR using polarization optimized experiments (POE) at ultrafast magic angle spinning

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Ultrafast magic angle spinning (MAS) technology and 1H detection have dramatically enhanced the sensitivity of solid-state NMR (ssNMR) spectroscopy of biopolymers. We previously showed that, when combined with polarization optimized experiments (POE), these advancements enable the simultaneous acquisition of multi-dimensional 1H- or 13C-detected experiments using a single receiver. Here, we propose a new sub-class within the POE family, namely HC-DUMAS, HC-MEIOSIS, and HC-MAeSTOSO, that utilize dual receiver technology for the simultaneous detection of 1H and 13C nuclei. We also expand this approach to record 1H-, 13C-, and 15N-detected homonuclear 2D spectra simultaneously using three independent receivers. The combination of POE and multi-receiver technology will further shorten the total experimental time of ssNMR experiments for biological solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Akbey U et al (2010) Optimum levels of exchangeable protons in perdeuterated proteins for proton detection in MAS solid-state NMR spectroscopy. J Biomol NMR 46:67–73

    Google Scholar 

  • Andreas LB et al (2016) Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci USA 113:9187–9192

    Google Scholar 

  • Andronesi OC et al (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127:12965–12974

    Google Scholar 

  • Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    ADS  Google Scholar 

  • Banigan JR, Traaseth NJ (2012) Utilizing afterglow magnetization from cross-polarization magic-angle-spinning solid-state NMR spectroscopy to obtain simultaneous heteronuclear multidimensional spectra. J Phys Chem B 116:7138–7144

    Google Scholar 

  • Barbet-Massin E et al (2013) Out-and-back 13C–13C scalar transfers in protein resonance assignment by proton-detected solid-state NMR under ultra-fast MAS. J Biomol NMR 56:379–386

    Google Scholar 

  • Barbet-Massin E et al (2014) Rapid proton-detected NMR assignment for proteins with fast magic angle spinning. J Am Chem Soc 136:12489–12497

    Google Scholar 

  • Bellstedt P et al (2012) Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra. J Biomol NMR 54:325–335

    Google Scholar 

  • Castellani F et al (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    ADS  Google Scholar 

  • Cavanagh J, Fairbrother WJ, Palmer AG, Rance M, Skelton NJ (2007) Protein NMR spectroscopy: principles and practice, 2nd edn. Academic Press, Cambridge, pp 1–888

    Google Scholar 

  • Chaves-Arquero B et al (2018) A CON-based NMR assignment strategy for pro-rich intrinsically disordered proteins with low signal dispersion: the C-terminal domain of histone H1.0 as a case study. J Biomol NMR 72:139–148

    Google Scholar 

  • Chevelkov V, Rehbein K, Diehl A, Reif B (2006) Ultrahigh resolution in proton solid-state NMR spectroscopy at high levels of deuteration. Angew Chem Int Ed 45:3878–3881

    Google Scholar 

  • Das BB, Opella SJ (2016) Simultaneous cross polarization to (13)C and (15)N with (1)H detection at 60kHz MAS solid-state NMR. J Magn Reson 262:20–26

    ADS  Google Scholar 

  • Delaglio FG, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Google Scholar 

  • Franks WT et al (2005) Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J Am Chem Soc 127:12291–12305

    Google Scholar 

  • Franks WT, Kloepper KD, Wylie BJ, Rienstra CM (2007) Four-dimensional heteronuclear correlation experiments for chemical shift assignment of solid proteins. J Biomol NMR 39:107–131

    Google Scholar 

  • Fricke P et al (2017) Backbone assignment of perdeuterated proteins by solid-state NMR using proton detection and ultrafast magic-angle spinning. Nat Protoc 12:764–782

    Google Scholar 

  • Fusco G et al (2014) Direct observation of the three regions in alpha-synuclein that determine its membrane-bound behaviour. Nat Commun 5:3827

    ADS  Google Scholar 

  • Gallo A, Franks WT, Lewandowski JR (2019) A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection. J Magn Reson 305:219–231

    ADS  Google Scholar 

  • Gan Z et al (2017) NMR spectroscopy up to 352T using a series-connected hybrid magnet. J Magn Reson 284:125–136

    ADS  Google Scholar 

  • Gayen A, Leninger M, Traaseth NJ (2016) Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat Chem Biol 12:141–145

    Google Scholar 

  • Gopinath T, Kumar A (2006) Hadamard NMR spectroscopy for two-dimensional quantum information processing and parallel search algorithms. J Magn Reson 183:259–268

    ADS  Google Scholar 

  • Gopinath T, Veglia G (2009) Sensitivity enhancement in static solid-state NMR experiments via single- and multiple-quantum dipolar coherences. J Am Chem Soc 131:5754–5756

    Google Scholar 

  • Gopinath T, Veglia G (2012) Dual acquisition magic-angle spinning solid-state NMR-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew Chem Int Ed Engl 51:2731–2735

    Google Scholar 

  • Gopinath T, Veglia G (2013) Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra. J Chem Phys 138:184201

    ADS  Google Scholar 

  • Gopinath T, Veglia G (2015) Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations. J Magn Reson 253:143–153

    ADS  Google Scholar 

  • Gopinath T, Veglia G (2016a) Orphan spin polarization: a catalyst for high-throughput solid-state NMR spectroscopy of proteins. Annu Rep NMR Spectrosc 89:103–121

    Google Scholar 

  • Gopinath T, Veglia G (2016b) Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): how far can we push residual spin polarization in solid-state NMR? J Magn Reson 267:1–8

    ADS  Google Scholar 

  • Gopinath T, Veglia G (2018a) Probing membrane protein ground and conformationally excited states using dipolar- and J-coupling mediated MAS solid state NMR experiments. Methods 148:115–122

    Google Scholar 

  • Gopinath T, Veglia G (2018b) Experimental aspects of polarization optimized experiments (POE) for magic angle spinning solid-state NMR of microcrystalline and membrane-bound proteins. Methods Mol Biol 1688:37–53

    Google Scholar 

  • Gopinath T, Veglia G (2019) Proton-detected polarization optimized experiments (POE) using ultrafast magic angle spinning solid-state NMR: multi-acquisition of membrane protein spectra. J Magn Reson 310:106664

    Google Scholar 

  • Gopinath T, Mote KR, Veglia G (2011) Proton evolved local field solid-state nuclear magnetic resonance using Hadamard encoding: theory and application to membrane proteins. J Chem Phys 135:074503

    ADS  Google Scholar 

  • Gopinath T, Nelson SED, Veglia G (2017) (1)H-detected MAS solid-state NMR experiments enable the simultaneous mapping of rigid and dynamic domains of membrane proteins. J Magn Reson 285:101–107

    ADS  Google Scholar 

  • Gopinath T, Wang S, Lee J, Aihara H, Veglia G (2019) Hybridization of TEDOR and NCX MAS solid-state NMR experiments for simultaneous acquisition of heteronuclear correlation spectra and distance measurements. J Biomol NMR 73:141–153

    Google Scholar 

  • Gor'kov PL et al (2007) Using low-E resonators to reduce RF heating in biological samples for static solid-state NMR up to 900 MHz. J Magn Reson 185:77–93

    ADS  Google Scholar 

  • Gustavsson M et al (2013) Allosteric regulation of SERCA by phosphorylation-mediated conformational shift of phospholamban. Proc Natl Acad Sci USA 110:17338–17343

    ADS  Google Scholar 

  • Hartmann SR, Hahn EL (1962) Nuclear double resonance in the rotating frame. Phys Rev 128:2042–2053

    ADS  MATH  Google Scholar 

  • Heise H, Seidel K, Etzkorn M, Becker S, Baldus M (2005) 3D NMR spectroscopy for resonance assignment and structure elucidation of proteins under MAS: novel pulse schemes and sensitivity considerations. J Magn Reson 173:64–74

    ADS  Google Scholar 

  • Herbst C et al (2008) MAS solid state NMR of RNAs with multiple receivers. J Biomol NMR 41:121–125

    Google Scholar 

  • Hong M, Yamaguchi S (2001) Sensitivity-enhanced static N-15 NMR of solids by H-1 indirect detection. J Magn Reson 150:43–48

    ADS  Google Scholar 

  • Hu F, Luo W, Hong M (2010) Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–508

    ADS  Google Scholar 

  • Hu KN, Qiang W, Bermejo GA, Schwieters CD, Tycko R (2012) Restraints on backbone conformations in solid state NMR studies of uniformly labeled proteins from quantitative amide 15N–15N and carbonyl 13C–13C dipolar recoupling data. J Magn Reson 218:115–127

    ADS  Google Scholar 

  • Kupce E (2013) NMR with multiple receivers. Modern Nmr Methodology 335:71–96

    Google Scholar 

  • Kupce E, Freernan R (2008) Molecular structure from a single NMR experiment. J Am Chem Soc 130:10788–10792

    Google Scholar 

  • Kupce E, Kay LE, Freeman R (2010) Detecting the "Afterglow" of C-13 NMR in proteins using multiple receivers. J Am Chem Soc 132:18008–18011

    Google Scholar 

  • Lalli D et al (2017) Proton-based structural analysis of a heptahelical transmembrane protein in lipid bilayers. J Am Chem Soc 139:13006–13012

    Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327

    Google Scholar 

  • Levitt MH, Suter D, Ernst RR (1986) Spin Dynamics and thermodynamics in solid-state nmr cross polarization. J Chem Phys 84:4243–4255

    ADS  Google Scholar 

  • Lewandowski JR et al (2009) Proton assisted recoupling at high spinning frequencies. J Phys Chem B 113:9062–9069

    Google Scholar 

  • Loquet A et al (2018) 3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 138–139:26–38

    Google Scholar 

  • Maly T et al (2008) Dynamic nuclear polarization at high magnetic fields. J Chem Phys 128:052211

    ADS  Google Scholar 

  • Martineau C, Decker F, Engelke F, Taulelle F (2013) Parallelizing acquisitions of solid-state NMR spectra with multi-channel probe and multi-receivers: applications to nanoporous solids. Solid State Nucl Magn Reson 55–56:48–53

    Google Scholar 

  • Muller L, Kumar A, Baumann T, Ernst RR (1974) Transient oscillations in NMR cross-polarization experiments in solids. Phys Rev Lett 32:1402–1406

    ADS  Google Scholar 

  • Nielsen AB et al (2012) Simultaneous acquisition of PAR and PAIN spectra. J Biomol NMR 52:283–288

    Google Scholar 

  • Nishiyama Y, Zhang R, Ramamoorthy A (2014) Finite-pulse radio frequency driven recoupling with phase cycling for 2D (1)H/(1)H correlation at ultrafast MAS frequencies. J Magn Reson 243:25–32

    ADS  Google Scholar 

  • Novacek J et al (2011) 5D 13C-detected experiments for backbone assignment of unstructured proteins with a very low signal dispersion. J Biomol NMR 50:1–11

    Google Scholar 

  • Park SH et al (2012) Structure of the chemokine receptor CXCR1 in phospholipid bilayers. Nature 491:779–783

    ADS  Google Scholar 

  • Penzel S et al (2019) Spinning faster: protein NMR at MAS frequencies up to 126 kHz. J Biomol NMR 73:19–29

    Google Scholar 

  • Pines A, Gibby GM, Waugh JS (1973) Proton-enhanced NMR of dilute spins in solids. J Chem Phys 59:569–590

    ADS  Google Scholar 

  • Pinto C et al (2018) Formation of the beta-barrel assembly machinery complex in lipid bilayers as seen by solid-state NMR. Nat Commun 9:4135

    ADS  Google Scholar 

  • Qiang W, Yau WM, Lu JX, Collinge J, Tycko R (2017) Structural variation in amyloid-beta fibrils from Alzheimer's disease clinical subtypes. Nature 541:217–221

    ADS  Google Scholar 

  • Rienstra CM et al (2002) De novo determination of peptide structure with solid-state magic-angle spinning NMR spectroscopy. Proc Natl Acad Sci U S A 99:10260–10265

    ADS  Google Scholar 

  • Schmidt HL et al (2007) Crystal polymorphism of protein GB1 examined by solid-state NMR spectroscopy and X-ray diffraction. J Phys Chem B 111:14362–14369

    Google Scholar 

  • Shaka AJ, Keeler J, Frenkiel T, Freeman R (1983) An improved sequence for broadband decoupling: WALTZ-16. J Magn Reson 52:335–338

    ADS  Google Scholar 

  • Sharma M et al (2010) Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer. Science 330:509–512

    ADS  Google Scholar 

  • Sharma K, Madhu PK, Mote KR (2016) A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins. J Biomol NMR 65:127–141

    Google Scholar 

  • Sharma K, Madhu PK, Agarwal V, Mote KR (2020) Simultaneous recording of intra- and inter-residue linking experiments for backbone assignments in proteins at MAS frequencies higher than 60 kHz. J Biomol NMR. https://doi.org/10.1007/s10858-019-00292-y

    Article  Google Scholar 

  • Sinha N, Ramanathan KV (2000) Use of polarization inversion for resolution of small dipolar couplings in SLF-2D NMR experiments—an application to liquid crystals. Chem Phys Lett 332:125–130

    ADS  Google Scholar 

  • Stringer JA et al (2005) Reduction of RF-induced sample heating with a scroll coil resonator structure for solid-state NMR probes. J Magn Reson 173:40–48

    ADS  Google Scholar 

  • Struppe JO et al (2013) Long-observation-window band-selective homonuclear decoupling: increased sensitivity and resolution in solid-state NMR spectroscopy of proteins. J Magn Reson 236:89–94

    ADS  Google Scholar 

  • Struppe J et al (2017) Expanding the horizons for structural analysis of fully protonated protein assemblies by NMR spectroscopy at MAS frequencies above 100 kHz. Solid State Nucl Magn Reson 87:117–125

    Google Scholar 

  • Verel R, Baldus M, Nijman M, van Os JWM, Meier BH (1997) Adiabatic homonuclear polarization transfer in magic-angle-spinning solid-state NMR. Chem Phys Lett 280:31–39

    ADS  Google Scholar 

  • Viegas A et al (2016) UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection. J Biomol NMR 64:9–15

    Google Scholar 

  • Wasmer C et al (2008) Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319:1523–1526

    ADS  Google Scholar 

  • Wei YF, Ramamoorthy A (2001) 2D (15)N-(15)N isotropic chemical shift correlation established by (1)H-(1)H dipolar coherence transfer in biological solids. Chem Phys Lett 342:312–316

    ADS  Google Scholar 

  • Wickramasinghe NP et al (2009) Nanomole-scale protein solid-state NMR by breaking intrinsic 1HT1 boundaries. Nat Methods 6:215–218

    Google Scholar 

  • Wylie BJ et al (2011) Ultrahigh resolution protein structures using NMR chemical shift tensors. Proc Natl Acad Sci USA 108:16974–16979

    ADS  Google Scholar 

  • Xue K et al (2017) Limits of resolution and sensitivity of proton detected MAS solid-state NMR experiments at 111 kHz in deuterated and protonated proteins. Sci Rep 7:7444

    ADS  Google Scholar 

  • Zhang R, Mroue KH, Ramamoorthy A (2016) Hybridizing cross-polarization with NOE or refocused-INEPT enhances the sensitivity of MAS NMR spectroscopy. J Magn Reson 266:59–66

    ADS  Google Scholar 

  • Zhang R, Mroue KH, Ramamoorthy A (2017a) Proton-based ultrafast magic angle spinning solid-state NMR spectroscopy. Acc Chem Res 50:1105–1113

    Google Scholar 

  • Zhang R, Duong NT, Nishiyama Y, Ramamoorthy A (2017b) 3D Double-quantum/double-quantum exchange spectroscopy of protons under 100 kHz magic angle spinning. J Phys Chem B 121:5944–5952

    Google Scholar 

  • Zhou DH, Rienstra CM (2008) High-performance solvent suppression for proton detected solid-state NMR. J Magn Reson 192:167–172

    ADS  Google Scholar 

  • Zhou DH, Graesser DT, Franks WT, Rienstra CM (2006) Sensitivity and resolution in proton solid-state NMR at intermediate deuteration levels: quantitative linewidth characterization and applications to correlation spectroscopy. J Magn Reson 178:297–307

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Health (GM 64742, HL 144130, 1S10OD021536 to G.V.), the American Heart Association (19POST34420009 to D.W.), and the Minnesota NMR Center. We also thank Dr. J. Struppe and Dr. S. Pawsey from Bruker R&D for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopinath, T., Weber, D.K. & Veglia, G. Multi-receiver solid-state NMR using polarization optimized experiments (POE) at ultrafast magic angle spinning. J Biomol NMR 74, 267–285 (2020). https://doi.org/10.1007/s10858-020-00316-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-020-00316-y

Keywords

Navigation