Skip to main content
Log in

15N and 13C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [1H,13C]-labeled proteins

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The ongoing NMR method development effort strives for high quality multidimensional data with reduced collection time. Here, we apply ‘SOFAST-HMQC’ to frequency editing in 3D NOESY experiments and demonstrate the sensitivity benefits using highly deuterated and 15N, methyl labeled samples in H2O. The experiments benefit from a combination of selective T 1 relaxation (or L-optimized effect), from Ernst angle optimization and, in certain types of experiments, from using the mixing time for both NOE buildup and magnetization recovery. This effect enhances sensitivity by up to 2.4× at fast pulsing versus reference HMQC sequences of same overall length and water suppression characteristics. Representative experiments designed to address interesting protein NMR challenges are detailed. Editing capabilities are exploited with heteronuclear 15N,13C-edited, or with diagonal-free 13C aromatic/methyl-resolved 3D-SOFAST-HMQC–NOESY–HMQC. The latter experiment is used here to elucidate the methyl-aromatic NOE network in the hydrophobic core of the 19 kDa FliT-FliJ flagellar protein complex. Incorporation of fast pulsing to reference experiments such as 3D-NOESY–HMQC boosts digital resolution, simplifies the process of NOE assignment and helps to automate protein structure determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Amero C et al (2009) Fast two-dimensional NMR spectroscopy of high molecular weight protein assemblies. J Am Chem Soc 131:3448–3449. doi:10.1021/ja809880p

    Article  Google Scholar 

  • Augustyniak R, Ferrage F, Paquin R, Lequin O, Bodenhausen G (2011) Methods to determine slow diffusion coefficients of biomolecules: applications to Engrailed 2, a partially disordered protein. J Biomol NMR 50:209–218. doi:10.1007/s10858-011-9510-8

    Article  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) Nmrpipe—a multidimensional spectral processing system based on Unix pipes. J Biomol NMR 6:277–293. doi:10.1007/Bf00197809

    Article  Google Scholar 

  • Diercks T, Daniels M, Kaptein R (2005) Extended flip-back schemes for sensitivity enhancement in multidimensional HSQC-type out-and-back experiments. J Biomol NMR 33:243–259. doi:10.1007/s10858-005-3868-4

    Article  Google Scholar 

  • Frenkiel T, Bauer C, Carr MD, Birdsall B, Feeney J (1990) Hmqc–Noesy–Hmqc, a 3-dimensional Nmr experiment which allows detection of nuclear Overhauser effects between protons with overlapping signals. J Magn Reson 90:420–425. doi:10.1016/0022-2364(90)90152-Y

    ADS  Google Scholar 

  • Gardner KH, Zhang XC, Gehring K, Kay LE (1998) Solution NMR studies of a 42 KDa Escherichia coli maltose binding protein beta-cyclodextrin complex: chemical shift assignments and analysis. J Am Chem Soc 120:11738–11748. doi:10.1021/ja982019w

    Article  Google Scholar 

  • Geen H, Freeman R (1991) Band-selective radiofrequency pulses. J Magn Reson 93:93–141. doi:10.1016/0022-2364(91)90034-Q

    ADS  Google Scholar 

  • Gelis I et al (2007) Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131:756–769. doi:10.1016/j.cell.2007.09.039

    Article  Google Scholar 

  • Guntert P, Buchner L (2015) Combined automated NOE assignment and structure calculation with CYANA. J Biomol NMR 62:453–471. doi:10.1007/s10858-015-9924-9

    Article  Google Scholar 

  • Hwang TL, van Zijl PCM, Garwood M (1997) Broadband adiabatic refocusing without phase distortion. J Magn Reson 124:250–254. doi:10.1006/jmre.1996.1049

    Article  ADS  Google Scholar 

  • Jeener J, Meier BH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by 2-dimensional Nmr-spectroscopy. J Chem Phys 71:4546–4553. doi:10.1063/1.438208

    Article  ADS  Google Scholar 

  • Khanra N, Rossi P, Economou A, Kalodimos CG (2016) Recognition and targeting mechanisms by chaperones in flagellum assembly and operation. Proc Nat Acad Sci 113:9798–9803. doi:10.1073/pnas.1607845113

  • Kay LE, Clore GM, Bax A, Gronenborn AM (1990) 4-Dimensional heteronuclear triple-resonance Nmr-spectroscopy of Interleukin-1-beta in solution. Science 249:411–414. doi:10.1126/science.2377896

    Article  ADS  Google Scholar 

  • Lee W, Tonelli M, Markley JL (2015) NMRFAM-SPARKY: enhanced software for biomolecular NMR spectroscopy. Bioinformatics 31:1325–1327. doi:10.1093/bioinformatics/btu830

    Article  Google Scholar 

  • Lichtenecker RJ (2014) Synthesis of aromatic C-13/H-2-alpha-ketoacid precursors to be used in selective phenylalanine and tyrosine protein labelling. Org Biomol Chem 12:7551–7560. doi:10.1039/c4ob01129e

    Article  Google Scholar 

  • Liu ML, Mao XA, Ye CH, Huang H, Nicholson JK, Lindon JC (1998) Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. J Magn Reson 132:125–129. doi:10.1006/jmre.1998.1405

    Article  ADS  Google Scholar 

  • Mobli M, Stern AS, Hoch JC (2006) Spectral reconstruction methods in fast NMR: reduced dimensionality, random sampling and maximum entropy. J Magn Reson 182:96–105. doi:10.1016/j.jmr.2006.06.007

    Article  ADS  Google Scholar 

  • Morshauser RC, Zuiderweg ERP (1999) High-resolution four-dimensional HMQC–NOESY–HSQC spectroscopy. J Magn Reson 139:232–239. doi:10.1006/jmre.1999.1802

    Article  ADS  Google Scholar 

  • Pervushin K, Vogeli B, Eletsky A (2002) Longitudinal (1)H relaxation optimization in TROSY NMR spectroscopy. J Am Chem Soc 124:12898–12902

    Article  Google Scholar 

  • Rossi P et al (2015) A hybrid NMR/SAXS-based approach for discriminating oligomeric protein interfaces using Rosetta. Proteins 83:309–317. doi:10.1002/prot.24719

    Article  Google Scholar 

  • Saio T, Guan X, Rossi P, Economou A, Kalodimos CG (2014) Structural basis for protein antiaggregation activity of the trigger factor chaperone. Science. doi:10.1126/science.1250494

    Google Scholar 

  • Sathyamoorthy B, Lee J, Kimsey I, Ganser LR, Al-Hashimi H (2014) Development and application of aromatic [(13)C, (1)H] SOFAST-HMQC NMR experiment for nucleic acids. J Biomol NMR 60:77–83. doi:10.1007/s10858-014-9856-9

    Article  Google Scholar 

  • Schanda P, Kupce E, Brutscher B (2005) SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR 33:199–211. doi:10.1007/s10858-005-4425-x

    Article  Google Scholar 

  • Schanda P, Forge V, Brutscher B (2006a) HET-SOFAST NMR for fast detection of structural compactness and heterogeneity along polypeptide chains. Magn Reson Chem 44:S177–S184. doi:10.1002/mrc.1825

    Article  Google Scholar 

  • Schanda P, Van Melckebeke H, Brutscher B (2006b) Speeding up three-dimensional protein NMR experiments to a few minutes. J Am Chem Soc 128:9042–9043. doi:10.1021/ja062025p

    Article  Google Scholar 

  • Shen Y, Bax A (2015) Protein Structural Information Derived from NMR Chemical Shift with the neural network program TALOS-N. Methods Mol Biol 1260:17–32. doi:10.1007/978-1-4939-2239-0_2

    Article  Google Scholar 

  • Solyom Z, Schwarten M, Geist L, Konrat R, Willbold D, Brutscher B (2013) BEST-TROSY experiments for time-efficient sequential resonance assignment of large disordered proteins. J Biomol NMR 55:311–321. doi:10.1007/s10858-013-9715-0

    Article  Google Scholar 

  • Sprangers R, Kay LE (2007) Probing supramolecular structure from measurement of methyl H-1-C-13 residual dipolar couplings. J Am Chem Soc 129:12668. doi:10.1021/ja075846i

    Article  Google Scholar 

  • Stanek J, Nowakowski M, Saxena S, Ruszczynska-Bartnik K, Ejchart A, Kozminski W (2013) Selective diagonal-free C-13, C-13-edited aliphatic-aromatic NOESY experiment with non-uniform sampling. J Biomol NMR 56:217–226. doi:10.1007/s10858-013-9739-5

    Article  Google Scholar 

  • Stoesz JD, Redfield AG, Malinowski D (1978) Cross relaxation and spin diffusion effects on proton Nmr of biopolymers in H2O—solvent saturation and chemical exchange in superoxide-dismutase. FEBS Lett 91:320–324. doi:10.1016/0014-5793(78)81201-0

    Article  Google Scholar 

  • Tejero R, Snyder D, Mao BC, Aramini JM, Montelione GT (2013) PDBStat: a universal restraint converter and restraint analysis software package for protein NMR. J Biomol NMR 56:337–351. doi:10.1007/s10858-013-9753-7

    Article  Google Scholar 

  • Theillet FX, Rose HM, Liokatis S, Binolfi A, Thongwichian R, Stuiver M, Selenko P (2013) Site-specific NMR mapping and time-resolved monitoring of serine and threonine phosphorylation in reconstituted kinase reactions and mammalian cell extracts. Nat Protoc 8:1416–1432. doi:10.1038/nprot.2013.083

    Article  Google Scholar 

  • Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced H-1-C-13 NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428. doi:10.1021/ja030153x

    Article  Google Scholar 

  • Vuister GW, Clore GM, Gronenborn AM, Powers R, Garrett DS, Tschudin R, Bax A (1993) Increased resolution and improved spectral quality in 4-dimensional C-13/C-13-separated Hmqc–Noesy–Hmqc spectra using pulsed-field gradients. J Magn Reson Ser B 101:210–213. doi:10.1006/jmrb.1993.1035

    Article  Google Scholar 

  • Xia YL, Man D, Zhu G (2001) 3D H-aro-NOESY-CH3NH and C-aro-NOESY-CH3NH experiments for double labeled proteins. J Biomol NMR 19:355–360. doi:10.1023/A:1011288324900

    Article  Google Scholar 

  • Zwahlen C, Gardner KH, Sarma SP, Horita DA, Byrd RA, Kay LE (1998) An NMR experiment for measuring methyl-methyl NOEs in C-13-labeled proteins with high resolution. J Am Chem Soc 120:7617–7625. doi:10.1021/ja981205z

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Lewis Kay, Nik Sgourakis and Yoan Monneau for helpful discussions and Tao Xie and Yajun Jiang for supplying test samples.

Funding

This work is financially supported by the NIH grants AI094623 and AI121858 to C.G.K. and by Minnesota NMR Center (MNMR).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Paolo Rossi, Gianluigi Veglia or Charalampos G. Kalodimos.

Ethics declarations

Conflict of interest

None.

Additional information

Paolo Rossi and Youlin Xia have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 4527 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, P., Xia, Y., Khanra, N. et al. 15N and 13C- SOFAST-HMQC editing enhances 3D-NOESY sensitivity in highly deuterated, selectively [1H,13C]-labeled proteins. J Biomol NMR 66, 259–271 (2016). https://doi.org/10.1007/s10858-016-0074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-016-0074-5

Keywords

Navigation